Recently, various aspects of the gas/solid surface interaction have been studied with great success with the aid of modern experimental techniques. However, no marked progress has occurred in the study of the thermodynamic properties of adsorption. Only a limited number of cases19,29,60,75,94 are known in which the molecular image of adsorption has been elucidated from analysis of the thermodynamic properties. The main difficulties arise from surface contamination and surface heterogeneity. Two sources of surface contamination are considered. One is due to gaseous impurities, which are preferentially adsorbed, or which reduce or oxidize the surface of the adsorbent. The trouble caused by this type of contamination has been greatly reduced by modern vacuum techniques. Another source of contamination is the surface accumulation of impurities originally contained in the bulk of the solid31,53,102. At the present time, this problem is difficult to solve, and efforts are required to investigate the surface composition of adsorbents in their working state. Surface heterogeneity originates not only from impurities but also from structural defects, i.e. point defects, dislocations, steps, kinks and edges. Apart from point defects, the concentration of structural defects cannot be quantitatively or thermodynamically controlled. The divergence of experimental data from different laboratories may be ascribed mainly to such surface heterogeneity. However, if the preparation and treatment of an adsorbent are strictly controlled, not only in one’s own laboratory but also internationally, reproducible data can be obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Aylmore, D. W. and W. B. Jepson. J. Sci. Instrum. 38, 156 (1961).Google Scholar
  2. 2.
    Barrer, R. M. and S. Wasilewski. J. Sci. Instrum. 37, 432 (1960).Google Scholar
  3. 3.
    Beebe, R. A., P. L. Evans, T. C. Wleisteuber and L. W. Richards, J. Phys. Chem. 70, 1009 (1966).Google Scholar
  4. 4.
    Bosch, A. van den. Vacuum Microbalance Techniques, Vol. V, p. 77. Plenum: New York (1966).Google Scholar
  5. 5.
    Boschi, L. A. and E. A. Garcia. Rev. Sci. Instrum. 38, 1610 (1967).Google Scholar
  6. 6.
    Bradley, R. S. J. Sci. Instrum. 29, 84 (1952).Google Scholar
  7. 7.
    Bushuk, W. and G. A. Winkler. Canad. J. Chem. 33, 1729 (1955).Google Scholar
  8. 8.
    Chihara, H. and J. A. Morrison. Experimental Thermodynamics, Vol. I, Chap. 13, IUPAC, Butterworths: London (1968).Google Scholar
  9. 8a.
    Cahn, L. and H. Schultz. Analyt. Chem. 35, 1729 (1963).Google Scholar
  10. 9.
    Chnèbault, P. and A. Schüren kämper. J. Phys. Chem. 69, 2300 (1965).Google Scholar
  11. 10.
    Clark, J. T. J. Phys. Chem. 68, 884 (1964).Google Scholar
  12. 11.
    Cochrane, H., P. L. Walker, W. S. Piethorn and H. C. Friedman. J. Colloid Interface Sci. 24, 405 (1967).Google Scholar
  13. 12.
    Corrin, M. L. and C. P. Rutkowski. J. Phys. Chem. 58, 1089 (1954).Google Scholar
  14. 13.
    Constabaris, G., J. H. Singleton and G. D. Halsey Jr. J. Phys. Chem. 63, 1350 (1959).Google Scholar
  15. 14.
    Coolidge, A. S. J. Amer. Chem. Soc 56, 554 (1934).Google Scholar
  16. 15.
    Cutting, P. A., Vacuum Microbalance Techniques, Vol. VII, p. 71. Plenum: New York (1970).Google Scholar
  17. 16.
    Czanderna, A. W. and J. M. Honig. Analyt. Chem. 29, 1206 (1957).Google Scholar
  18. 17.
    Czaplinski, A. and E. Zielinski. Przem. Chem. 37, 640 (1958).Google Scholar
  19. 18.
    Deitz, V. R. and L. F. Gleysteen. J. Res. Nat. Bur. Stand. 29, 191 (1942).Google Scholar
  20. 19.
    Drain, L. E. and J. A. Morrison. Trans. Faraday Soc. 48, 316 (1952).Google Scholar
  21. 20.
    Dubinin, M. M, B. P. Bering, V. V. Serpinsky and B. N. Vasil’ev. Surface Phenomena in Chemistry and Biology, p 172. Pergamon: Oxford (1958).Google Scholar
  22. 21.
    Edgecombe, F. H. C. and D. A. Jardine. Canad. J. Chem. 39, 1728 (1961).Google Scholar
  23. 22.
    Edmond, T. and J. P. Hobson. J. Vac. Sci. Technol. 2, 182 (1965).Google Scholar
  24. 23.
    Elliott, K. W. T., D. M. Woodman and R. S. Dadson. Vacuum, 17, 439 (1967).Google Scholar
  25. 24.
    Ernsberger, F. M. and C. M. Drew. Rev. Sci. Instrum. 24, 117 (1953).Google Scholar
  26. 25.
    Ernsberger, F. M. and H. W. Pitman. Rev. Sci. Instrum. 26, 584 (1955).Google Scholar
  27. 26.
    Everett, D. H. Trans. Faraday Soc. 46, 453, 942, 957 (1950).Google Scholar
  28. 27.
    Faeth, P. A. and C. B. Willingham. Technical Bulletin on the Assembly, Calibration and Operation of a Gas Adsorption Apparatus, etc., Mellon Institute for Industrial Research (September 1955).Google Scholar
  29. 28.
    Gallon, T. E., I. G. Higginbotham, M. Prutton and H. Tokutaka. Surf Sci. 21, 224 (1970).Google Scholar
  30. 29.
    Garden, L. A, G. L. Kington and W. Laing. Proc. Roy. Soc. A, 234, 35 (1956).Google Scholar
  31. 30.
    Gomer, R. Rev. Sci. Instrum. 24, 993 (1953).Google Scholar
  32. 31.
    Gomer, R. Advanc. Catalysis, Vol. VII, p 93. Academic Press: New York (1955).Google Scholar
  33. 32.
    Guggenheim, E., Elements of the Kinetic Theory of Gases, Pergamon: Oxford (1960).Google Scholar
  34. 33.
    Gulbransen, E. A. Rev. Sci. Instrum. 15, 201 (1944).Google Scholar
  35. 34.
    Hansen, N. Vakuum-Technik. 11, 70 (1961).Google Scholar
  36. 35.
    Herring, C. Structure and Properties of Solid Surfaces, Chap. 1, p 5, ed. R. Gomer and C. S. Smith, University of Chicago Press (1953).Google Scholar
  37. 36.
    Hill, T. L. Advanc. Catalysis, Vol. IV, p 212. Academic Press: New York (1952).Google Scholar
  38. 37.
    Hillecke, D. and H. Mayer. Vacuum Microbalance Techniques, Vol. VII, p 135. Plenum: New York (1970).Google Scholar
  39. 38.
    Hobson, J. P. Canad. J. Phys. 37, 300 (1959); J. Chem. Phys. 34, 1850 (1961)Google Scholar
  40. 38a.
    J. P. Hobson and R. A. Armstrong. J. Phys. Chem. 67, 2000 (1963).Google Scholar
  41. 39.
    Holmes, J. M. The Solid-Gas Interface, Vol. I, Chap. 5, p 127. Ed. E. A. Flood, Marcel Dekker: New York (1967).Google Scholar
  42. 40.
    Hooley, J. G. Canad. J. Chem. 35, 1414 (1957).Google Scholar
  43. 41.
    Ishii, H. and K. Nakayama. J. Vacuum Soc. Japan, 4, 414 (1961); Proc. 2nd Int. Congr. Vacuum Sci. Tech., p. 519. Pergamon: Oxford (1961).Google Scholar
  44. 42.
    Ishimura, H. Japanese J. Appl. Phys. 4, 934 (1965).Google Scholar
  45. 43.
    Ishimura, H. J. Vac. Soc. Japan, 6, 268 (1963) [in Japanese].Google Scholar
  46. 44.
    James, A. T. and A. J. P. Martin. Biochem. J. 50, 679 (1952).Google Scholar
  47. 45.
    Jones, W. M., P. J. Isaac and D. Phillips. Trans. Faraday Soc. 55, 1953 (1959).Google Scholar
  48. 46.
    Joy, A. S. Vacuum, 3, 254 (1953).Google Scholar
  49. 47.
    Joyner, L. G. Scientific and Industrial Glass Blowing, p 257. Ed. by W. E. Barr and V. J. Anhorn, Instruments Publ. Co.: Pittsburgh (1949).Google Scholar
  50. 48.
    Kington, G. L. and J.G. Aston. J. Amer. Chem. Soc. 75, 1929 (1951).Google Scholar
  51. 49.
    Kini, K. A. Fuel, London, 43, 173 (1964).Google Scholar
  52. 50.
    Klier, K. Rev. Sci. Instrum. 40, 372 (1969).Google Scholar
  53. 51.
    Kolenkow, R. J. and P. W. Zitzewitz. Vacuum Microbalance Techniques, Vol. IV, p 195. Plenum: New York (1965).Google Scholar
  54. 52.
    Kuhn, W., E. Robens, G. Sandstede and G. Walter. Vacuum Microbalance Techniques, Vol. VII, p 161. Plenum: New York (1970).Google Scholar
  55. 53.
    Kummers, J. T. and J. D. Young. J. Phys. Chem. 67, 107 (1963).Google Scholar
  56. 54.
    Lambert, B. and C. S. G. Phillips. Phil. Trans. A, 242, 415 (1950).Google Scholar
  57. 55.
    Lamers, K. W. and P. R. Rony. Lawrence Radiation Laboratory Report. UCRL-112I8, Parts I and II (1964–65).Google Scholar
  58. 56.
    Lauterbach, K. E, S. Laskin and L. Leach. J. Franklin Inst. 250, 13 (1950).Google Scholar
  59. 57.
    Leck, J. H. Pressure Measurements in Vacuum Systems, Chapman and Hall, London (1964).Google Scholar
  60. 58.
    Liang, S. Chu. J. Appl. Phys. 22, 148 (1951); J. Phys. Chem. 56, 660 (1952); 57, 910 (1953).Google Scholar
  61. 59.
    Lippens, B. C., B. G. Linsen and J. H. de Boer. J. Catalysis, 3, 32 (1964).Google Scholar
  62. 60.
    Machin, W. D. and S. Ross. Proc. Roy. Soc. A, 265, 455 (1962).Google Scholar
  63. 61.
    Machin, W. D. Canad. J. Chem. 45, 1904 (1967).Google Scholar
  64. 62.
    Massen, C. H., J. A. Poulis and J.’M. Thomas. J. Sci. Instrum. 41, 302 (1964).Google Scholar
  65. 63.
    Mayer, H., R. Niedermayer, W. Schroen, D. Stünkel and H. Göhre. Vacuum Microbalance Techniques, Vol. III, p 75. Plenum: New York (1963).Google Scholar
  66. 64.
    McBain, J. W. and R. F. Sessions. J. Colloid Sci. 3, 213 (1948).Google Scholar
  67. 65.
    Meyer, D. E. and J. E. Wells. J. Colloid Interface Sci. 22, 503 (1966).Google Scholar
  68. 66.
    Melville, S. H. and B. G. Gowenlock. Experimental Methods in Gas Reactions, MacMillan: London (1964).Google Scholar
  69. 67.
    Menon, P. G. Chem. Rev. 68, 277 (1968); Advances in High Pressure Research, Vol. III, Chap. 5, Academic Press: Oxford (1969).Google Scholar
  70. 68.
    Michel, A., P. G. Menon and C. A. Ten Seldan. Rec. Trav. Chim. Pays-Bas, 80, 483 (1961).Google Scholar
  71. 69.
    Moreau, C. Vacuum Microbalance Techniques, Vol. IV, p 21. Plenum: New York (1965).Google Scholar
  72. 70.
    Morrison, J. A. and D. M. Young. Rev. Sci. Instrum. 25, 518 (1954).Google Scholar
  73. 71.
    Oguri, T. and I. Kanomata. Read before the Ninth Meeting of the Vacuum Society of Japan (November 1968).Google Scholar
  74. 72.
    Ohtsuki, T. Private communication.Google Scholar
  75. 73.
    Orr, C. and J. M. Dalla Valle. Fine Particle Measurements, p 175. MacMillan: London (1959).Google Scholar
  76. 74.
    Ozawa, S. Thesis, Tohoku University, Japan (1971).Google Scholar
  77. 75.
    Pace, E. L., W. T. Berg and A. R. Siebert. J. Amer. Chem. Soc. 78, 153 (1956).Google Scholar
  78. 76.
    Pierotti, R. A. Vacuum Microbalance Techniques, Vol. VI, p 1. Plenum: New York (1967).Google Scholar
  79. 77.
    Podgurski, H. H. and F. W. Davis. J. Phys. Chem. 65, 1343 (1961).Google Scholar
  80. 78.
    Poulis, J. A., B. Pelupessey, C. H. Massen and J. M. Thomas. J. Sci. Instrum. 41, 295 (1964).Google Scholar
  81. 79.
    Rand, M. J. Rev. Sci. Instrum. 32, 991 (1961).Google Scholar
  82. 80.
    Redhead, P. A., J. P. Hobson and E. V. Kornelson. The Physical Basis of Ultrahigh Vacuum, Chapman and Hall: London (1968).Google Scholar
  83. 81.
    Rhodin, T. N. J. Amer. Chem. Soc. 72, 4343 (1950).Google Scholar
  84. 82.
    Ricca, F. and R. Medana. Ric. Sci. 4, 617 (1964).Google Scholar
  85. 83.
    Robens, E., G. Sandstede, G. Walter and G. Wurzbacher. Vacuum Microbalance Techniques, Vol. VII, p 195. Plenum: New York (1970).Google Scholar
  86. 84.
    Rosenberg, A. J. J. Amer. Chem. Soc. 78, 2929 (1956).Google Scholar
  87. 85.
    Rosenberg, A. J. and C. S. Martel Jr. J. Phys. Chem. 62, 457 (1958).Google Scholar
  88. 86.
    Ross, S. and J. P. Oliver. On Physical Adsorption, Interscience: New York (1964).Google Scholar
  89. 87.
    Sensui, Y. Vacuum, 20, 539 (1970).Google Scholar
  90. 88.
    Sereda, P. J. and R. F. Feldman. The Solid-Gas Interface. Vol. II, Chap. 24, ed. E. A. Flood, Marcel Dekker: New York (1967).Google Scholar
  91. 89.
    Stockbridge, C. D. Vacuum Microbalance Techniques, Vol. V, pp 147, 179, 193. Plenum: New York (1966).Google Scholar
  92. 90.
    Takaishi, T. Trans. Faraday Soc. 61, 840 (1965).Google Scholar
  93. 90a.
    Takaishi, T. and M. Mohri. JCS Faraday Trans. I, 68, 1921 (1972).Google Scholar
  94. 91.
    Takaishi, T. and Y. Sensui. Trans. Faraday Soc. 59, 2503 (1963).Google Scholar
  95. 92.
    Takaishi, T. and Y. Sensui. Vacuum, 20, 495 (1970).Google Scholar
  96. 93.
    Takaishi, T. and Y. Sensui. Surface Sci. 19, 339 (1970).Google Scholar
  97. 94.
    Takaishi, T., A. Yusa and F. Amakasu. Trans. Faraday Soc. 67, 3565 (1971).Google Scholar
  98. 95.
    Thomas, J. M. and J. A. Poulis. Vacuum Microbalance Techniques, Vol. III, p 15. Plenum: New York (1963).Google Scholar
  99. 96.
    Tuzi, Y. and T. Saito. J. Vac. Sci. Technol. 6, 238 (1969); J. Vac. Soc. Japan, 14, 83 (1971) [in Japanese].Google Scholar
  100. 97.
    Wade, W. H. and L. T. Slutsky. Vacuum Microbalance Techniques, Vol. II, p 115. Plenum: New York (1962).Google Scholar
  101. 98.
    Warner, A. W. and C. D. Stockbridge. Vacuum Microbalance Techniques, Plenum: New York. Vol. II (1962), pp 71, 93; Vol. III (1963), p 55.Google Scholar
  102. 99.
    Weinstein, A. and H. C. Friedman. Rev. Sci. Instrum. 35, 1083 (1964).Google Scholar
  103. 100.
    Wolsky, S. P. and E. J. Zdanuk. Vacuum Microbalance Techniques, Vol. II, p 37. Plenum: New York (1962).Google Scholar
  104. 101.
    Wooten, L. A. and J. R. C. Brown. J. Amer. Chem. Soc. 65, 113 (1943).Google Scholar
  105. 102.
    Yao, Y. F. Y. and J. T. Kummers. J. Phys. Chem. 73, 2262 (1969).Google Scholar
  106. 103.
    Young, D. M. Rev. Sci. Instrum. 24, 77 (1953).Google Scholar
  107. 104.
    Young, D. M. and A. D. Crowell. The Physical Adsorption of Gases, Butterworths: London (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • T. Takaishi
    • 1
  1. 1.Institute for Atomic EnergyRikkyo (St Paul’s) UniversityYokosukaJapan

Personalised recommendations