Advertisement

Temperature Measurement under Pressure

  • B. Le Neindre
  • Y. Garrabos

Abstract

One of the major problems in research in the area of high pressure has been the lack of an accurate and reliable method for continuous and simultaneous in situ evaluation of true pressure and temperature. Up to now, most of the temperature sensors have been developed for use at atmospheric pressure. On the other hand pressure calibration is difficult at temperatures far from room temperature, for instance close to absolute zero. The problem of temperature measurement in high pressure experiments has become more acute with the development of internally heated pressure cells. The great majority of sensors developed for use under pressure have been thermocouples, whose small size makes them suitable for high pressure experiments, even if such techniques are not free of problems as we will see. In the measurement of temperature at high pressure the biggest additional difficulty arises from the fact that it is difficult to get truly hydrostatic conditions; most of the high temperature, high pressure cells are composed of materials like levastone, talc or graphite which do not permit a close approximation to hydrostatic conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

IV. References

  1. 1.
    Asamoto, R. R. and P. E. Novak. Rev. Sci. Instrum. 38, 1047 (1967). Note errata, Rev. Sci. Instrum. 39, 1233 (1968).CrossRefGoogle Scholar
  2. 2.
    Bedford, R. E. Rev. Sci. Instrum. 36, 1571 (1965).CrossRefGoogle Scholar
  3. 3.
    Bedford, R. E. I.S.A. Trans. 9, 248 (1970).Google Scholar
  4. 4.
    Bedford, R. E. High. Temp. High Press. 4, 241 (1972).Google Scholar
  5. 5.
    Bedford, R. E., C. K. Ma, C. R. Barber, T. R. Chandler, T. R. Quinn, G. W. Burns and M. Scroger in Plumb(Ed), Part 3 (1972).Google Scholar
  6. 6.
    Bell, P. M., J. L. England and F. R. Boyd. ‘Accurate characterization of the high-pressure environment’. N.B.S. Spec. Publ. No. 326, p 63 (1971).Google Scholar
  7. 7.
    Benedict, R. P. and H. F. Ashby. Temperature: Its Measurement and Control in Science and Industry, Vol. III, Pt 2, p 51. Reinhold: New York (1952).Google Scholar
  8. 8.
    Birch, F. Rev. Sci. Instrum. 10, 137 (1939).CrossRefGoogle Scholar
  9. 9.
    Blackburn, G. F. and F. R. Caldwell, in Temperature: Its Measurement and Control in Science and Industry, Vol. III, Pt 2, p 161. Reinhold: New York (1962).Google Scholar
  10. 10.
    Blackburn, G. F. and F. R. Caldwell. J. Res. Nat. Bur. Stand. 68c, 41 (1964).Google Scholar
  11. 11.
    Blevin, W. R. Metrologia, 8, 146 (1972).CrossRefGoogle Scholar
  12. 12.
    Bloch, D. and F. Chaisse, J. Appl. Phys. 8, 409 (1967).CrossRefGoogle Scholar
  13. 13.
    Blosser, L. G. and H. S. Young. Rev. Sci. Instrum. 33, 1007 (1962).CrossRefGoogle Scholar
  14. 14.
    Bourassa, R. R., D. Lazarus and D. A. Blackburn. Phys. Rev. 165, 853 (1968).CrossRefGoogle Scholar
  15. 15.
    Brielles, J., D. Vidal and P. Malbrunot. J. Phys. E, Scientific Instruments, 6, 609 (1973).CrossRefGoogle Scholar
  16. 16.
    Bridgman, P. W. Proc. Amer. Acad. Arts Sci. 53, 269 (1918).CrossRefGoogle Scholar
  17. 17.
    Bridgman, P. W. ‘Studies in large plastic flow and fractures’. McGraw-Hill: London (1962); Proc. Amer. Acad. Arts Sci. 76, 57 (1948).Google Scholar
  18. 18.
    Bundy, F. P. J. Appl. Phys. 32, 483 (1961).CrossRefGoogle Scholar
  19. 19.
    Burns, G. W. and J. S. Gallagher. J. Res. Nat. Bur. Stand. 70c, 89 (1966).Google Scholar
  20. 20.
    Corll, J. A. Rev. Sci. Instrum. 35, 243 (1964).CrossRefGoogle Scholar
  21. 21.
    Cornish, R. H. and A. E. Ruoff. Rev. Sci. Instrum. 32, 639 (1961).CrossRefGoogle Scholar
  22. 22.
    Davies, G. and T. Evans. Proc. Roy. Soc. A, 328, 413 (1972).CrossRefGoogle Scholar
  23. 23.
    Davies, L. A., R. B. Gordon, J. K. Tien and J. R. Vaisnays. Rev. Sci. Instrum. 35, 368 (1964).CrossRefGoogle Scholar
  24. 24.
    Dickson, A. and H. Meyer. Phys. Rev. 138, A 1293 (1965).CrossRefGoogle Scholar
  25. 25.
    Downs, J. L. and R. T. Payne. Rev. Sci. Instrum. 40, 1278 (1969).CrossRefGoogle Scholar
  26. 26.
    Dugdale, J. S. and J. A. Hulbert. Canad. J. Phys. 35, 720 (1957).CrossRefGoogle Scholar
  27. 27.
    Duk, Y. Rev. Sci. Instrum. 37, 1611 (1966).CrossRefGoogle Scholar
  28. 28.
    Fateeva, N. S. and L. F. Vereshchagin. Pribori i Teknika Eksperimenta, 3, 222 (1970).Google Scholar
  29. 29.
    Fateeva, N. S. and L. F. Vereshchagin, Zh. Eksp. Teor. Fiz. SSSR, 13, 157 (1971).Google Scholar
  30. 30.
    Fateeva, N. S. and L. F. Vereshchagin, Zh. Eksp. Teor. Fiz. SSSR, 14, 233 (1971).Google Scholar
  31. 31.
    Fateeva, N. S. and L. F. Vereshchagin, Soviet Physics, Doklady, 16, 322 (1971).Google Scholar
  32. 32.
    Freud, P. J. and P. N. La Mori. ‘Accurate characterization of the high-pressure environment’, N.B.S. Spec. Publ. No. 326, p 67 (1971).Google Scholar
  33. 33.
    Fujishiro, I., H. Mii and S. Sakaida. Bull. Jap. Soc. Appl. Phys. 37, 621 (1968).Google Scholar
  34. 34.
    Fujishiro, I., H. Mii and M. Senoo, Colloq. Int. Cent. Nat. Rech. Sci. (1969), No. 188, p 457 (Publ. 1970).Google Scholar
  35. 35.
    Garrison, J B. and A. W. Lawson. Rev. Sci. Instrum. 20, 785 (1949).CrossRefGoogle Scholar
  36. 36.
    Getting, J. C. and G. C. Kennedy. J. Appl. Phys. 41, 4552 (1970).CrossRefGoogle Scholar
  37. 37.
    Gibbs, D. F. and M. Jarman, J. Sci. Instrum. 35, 472 (1958).CrossRefGoogle Scholar
  38. 38.
    Goree, W. S., B. McDowell and T. A. Scott. Rev. Sci. Instrum. 36, 99 (1965).CrossRefGoogle Scholar
  39. 39.
    Gugan, D. J. Sci. Instrum. 33, 160 (1956).CrossRefGoogle Scholar
  40. 40.
    Hammons, B. E. Rev. Sci. Instrum. 42, 1889 (1971).CrossRefGoogle Scholar
  41. 41.
    Hanneman, R. E. and H. M. Strong, J. Appl. Phys. 36, 523 (1965).CrossRefGoogle Scholar
  42. 42.
    Hanneman, R. E. and H. M. Strong, J. Appl. Phys. 37, 612 (1966).CrossRefGoogle Scholar
  43. 43.
    Hanneman, R. E., H. M. Strong and F. P. Bundy. ‘Accurate characterization of the high-pressure environment’. N.B.S. Spec. Publ. No. 326, p 53 (1971).Google Scholar
  44. 44.
    Herzfeld, C. M. Temperature: Its Measurement and Control in Science and Industry, Vol. III, Pt 2. Reinhold: New York (1962).Google Scholar
  45. 45.
    Heydemann, P. L. M. Rev. Sci. Instrum. 38, 558 (1967).CrossRefGoogle Scholar
  46. 46.
    Lacam, A., D. Vidal and M. Lallemand. Instruments et Laboratoires, Dunod: Paris. 36, 1 (1966).Google Scholar
  47. 47.
    Lachman, J. C. and J. A. McGurty, in Temperature: Its Measurements and Control in Science and Industry; Pt 1, p 177 Reinhold: New York (1962).Google Scholar
  48. 48.
    Lazarre, F. J. Phys. Radium, 14, 213 (1953).CrossRefGoogle Scholar
  49. 49.
    Lazarre, F., J. R. Saurel and B. Vodar. J. Rech. CNRS, 5, 324 (1954).Google Scholar
  50. 50.
    Lazarus, D., R. N. Jeffrey and J. D. Weiss. Appl. Phys. Letters, 19, 371 (1971).CrossRefGoogle Scholar
  51. 51.
    Magnien, C. and R. Bienaime. Rev. Phys. Appl. (Fr.), 3, 283 (1968).CrossRefGoogle Scholar
  52. 52.
    Peters, E. T. and J. J. Ryan. J. Appl. Phys. 37, 933 (1966).CrossRefGoogle Scholar
  53. 53.
    Powell, R. F. Contemp. Phys. 13, 159 (1972).CrossRefGoogle Scholar
  54. 54.
    Powell, R. L., L. P. Caywood and M. D. Bunch, in Temperature: Its Measurement and Control in Science and Industry, Vol. III, Pt 2, p 65. Reinhold: New York (1962).Google Scholar
  55. 55.
    Quinn, T. J. and T. R. D. Chandler. Platinum Metals Rev. 16, 2 (1972).Google Scholar
  56. 56.
    Schirber, J. E. Phys. Rev. 140 A, 2065 (1965).CrossRefGoogle Scholar
  57. 57.
    Schirber, J. E. and D. W. Schanfoldt. Rev. Sci. Instrum. 9, 270 (1968).CrossRefGoogle Scholar
  58. 58.
    Simon, I. Rev. Sci. Instrum. 28, 963 (1957).CrossRefGoogle Scholar
  59. 59.
    Smith, A. H. in ‘Second Annual Report to O.N.R. on High Pressure Research’ by the Institute for the Study of Metals, University of Chicago, Ed. A. W. Lawson, p 3 (1949).Google Scholar
  60. 60.
    Sparks, L. L. and J. G. Hust. Spec. Publ. (US) Nat. Bur. Stand. No. 260, 26 pp (1972).Google Scholar
  61. 61.
    Sparks, L. L., R. L. Powell and W. J. Hall. (US) Nat. Bur. Stand. Monogr. No. 124, 56 pp (1972).Google Scholar
  62. 62.
    Stepanov, V. A. Pribory i Tekhnika Eksperimenta, 3, 179 (1961).Google Scholar
  63. 63.
    Terry, R. E. and A. L. Ruof. Rev. Sci. Instrum. 43, 1379 (1972).CrossRefGoogle Scholar
  64. 64.
    Thomas, D. B. J. Res. Nat. Bur. Stand. 67C, 337 (1963).Google Scholar
  65. 65.
    Tsiklis, D. S. Handbook of Techniques in High-pressure Research and Engineering, p 258. Plenum: New York (1968).Google Scholar
  66. 66.
    Vidal, D., J. Brielles, M. Lallemand and P. Malbrunot. J. Phys. D, Applied Physics, 6, 1052 (1973).CrossRefGoogle Scholar
  67. 67.
    Waxman, M. and J. R. Hastings. J. Appl. Phys. 43, 2629 (1972).CrossRefGoogle Scholar
  68. 68.
    Wentorf Jr, R. H. in ‘Accurate characterization of the higher-pressure environment’ N.B.S. Spec. Publ. No. 326, 81 (1971).Google Scholar
  69. 69.
    Zysk, E. D. and A. R. Robertson. Instrum. Technol. 18, 30 (1971).Google Scholar
  70. 70.
    Zysk, E. D. and A. R. Robertson. Instrum. Technol. 19, 42 (1972).Google Scholar
  71. 71.
    Zysk, E. D. and D. A. Toenshoff. Engelhard Ind. Tech. Bull. 7, 137 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • B. Le Neindre
    • 1
  • Y. Garrabos
    • 1
  1. 1.Bellevue 92France

Personalised recommendations