Advertisement

Part 2. Cryoscopy

  • Y. Doucet
Chapter

Abstract

As a professor at the University of Grenoble, François-Marie Raoult formulated many of the basic laws of physical chemistry. One of these laws provides a definition for so-called ‘ideal solutions’; another one has a much broader content than was at first thought. It is the ‘cryoscopic’ law, which was so named by Raoult himself, from the Greek words χρνος (ice) and σκοπεω (I observe)64. Chemists, however, just saw in it one of the methods of determination of molar masses. It was only when van’t Hoff84 gave an expression for the solvent cryoscopic constant that Raoult’s experimental work gained universal acceptance.

List of Symbols

A

Coefficient of Debye-Höckel theory

a

Ionic parameter of Debye-Höckel theory

ai

Activity of particle i

a+

Ideal activity of ionic substance

B

Coefficient of Debye-Höckel theory

c

Molarity (number of moles per liter of solvent)

d

Density

E

e.m.f. of one couple

fi

Rational symmetric activity coefficient of component i

G

Molar Gibbs function (free enthalpy)

g

Gibbs function for n molecules or moles

I

Ionic strength

i

van’t Hoff coefficient

j

Lewis cryoscopic variable

Li

Heat of fusion, component i

l

Length of wire

ln

Natural or Napierian logarithm

log

Decimal or common logarithm

m

Molality (number of moles per kilogram of solvent)

N

Number of junctions

R

Universal ideal gas constant

Rg

Charging resistance

Rj

Resistance of wires

S or S'

Cross-sectional area of a wire

Sf

Molar melting entropy

T

Kelvin temperature

T0i

Melting point of pure component i

W

Interaction parameter for regular solutions

Xi

Mole fraction, component i

Zi

Ionic charge of ith ion

α

Molecular dissociation coefficient

γ

Practical dissymmetrical activity coefficient of solute

γ±

Mean activity coefficient of ions

δ

Hydrolysis ratio

Δc

Difference of the molar specific heats of the liquid and the solid component

ΔS

Entropy of mixing

θ

Cry oscopic depression (T 01T)

λ

Cryoscopic constant in molai scale

v

Total number of ions in the molecule

vi

Number of ions of type i

vi'

Number of ions of the solute common to the solvent of type i

π

Osmotic pressure

π'

Osmotic pressure in milliosmols

ø

Practical osmotic coefficient

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. 1.
    Abegg, R. Z. Phys. Chem. 20, 207 (1896).Google Scholar
  2. 2.
    Adams, L. H. J. Amer. Chem. Soc. 37, 481 (1915).CrossRefGoogle Scholar
  3. 3.
    Arrhenius, S. Z. Phys. Chem. 1, 631 (1887) and 2, 491 (1888).Google Scholar
  4. 4.
    Bedfort, J. G. Proc. Roy. Soc. (London) A, 83, 459 (1910).Google Scholar
  5. 5.
    Blander, M. J. Chem. Phys. 36, 1092 (1962).CrossRefGoogle Scholar
  6. 5a.
    Blander, M. and J. Braunstein, Ann. NY Acad. Sci. 79, 838 (1960).CrossRefGoogle Scholar
  7. 6.
    Blander, M. and I. J. Yosim. J. Chem. Phys. 39, 2610 (1963).CrossRefGoogle Scholar
  8. 7.
    Boutaric, A. Bull. Soc. Chim. France, 13, 651 (1913).Google Scholar
  9. 8.
    Braunstein, J. and K. A. Romberger, Inorg. Chem. 9, 1273 (1970).CrossRefGoogle Scholar
  10. 9.
    Brown, P. G. and J. E. Prue. Proc. Roy. Soc. (London), 232, 320 (1955).CrossRefGoogle Scholar
  11. 10.
    Bye, J. Bull. Soc. Chim. France 9, 517 (1942).Google Scholar
  12. 11.
    Cavallaro, L. RC Accad. Ital. 11, 697 (1940).Google Scholar
  13. 12.
    Cohen-Adad, R. and A. P. Rollet, CR Acad. Sci., Paris, 227, 554 (1948) and Publ. Univ. Alger, 1B, 85 (1955).Google Scholar
  14. 13.
    Cornec, E. Ann. Chim. Phys. 29, 490 (1913).Google Scholar
  15. 14.
    Darmois, E. ‘L’activité des solutions électrolytiques’. Actualités. Sci., Paris (Herman) No. 945 (1943)Google Scholar
  16. 14a.
    Darmois, E. Bull Un. Phys., Paris, 260–261, 193 (1933)Google Scholar
  17. 14b.
    Darmois, E. and J.-J. Cessac. CR Acad. Sci., Paris, 191, 1091 (1930)Google Scholar
  18. 14c.
    Darmois, E. and R. Chalin. CR Acad. Sci., Paris, 195, 786 (1932)Google Scholar
  19. 15.
    Darmois, E. and J. Zarzycki. CR Acad. Sci., Paris, 234, 95 (1952).Google Scholar
  20. 16.
    Doucet, J, G. Porta and G. Finiels. CR Acad. Sci., Paris, 270C, 1208 (1970).Google Scholar
  21. 17.
    Doucet, Y. J. Phys. Radium, 4, 53 (1943).Google Scholar
  22. 18.
    Doucet, Y. J. Phys. Radium, 4, 204 (1943).CrossRefGoogle Scholar
  23. 19.
    Doucet, Y. and Mlle J. Defretière. CR Acad. Sci., Paris, 224, 337 (1947).Google Scholar
  24. 20.
    Doucet, Y. Bull. Un. Phys., Paris, 361, 76 (1947).Google Scholar
  25. 21.
    Doucet, Y. J. Phys. Radium, 4, 41 (1943).CrossRefGoogle Scholar
  26. 22.
    Douglas, T. B. Trans. Amer. Soc. Mech. Engrs, 79, 23 (1957).Google Scholar
  27. 23.
    Dworkin, A. S. and M. A. Bredig. J. Phys. Chem. 64, 269 (1960).CrossRefGoogle Scholar
  28. 24.
    Eichelberger, W. C. J. Amer. Chem. Soc. 56, 799 (1934).CrossRefGoogle Scholar
  29. 25.
    Eyring, H., T. Ree and N. Hirai. Proc. Nat. Acad. Sci., Wash. 44, 683 (1958).CrossRefGoogle Scholar
  30. 26.
    Finel, A., P. J. Gardner, R. D. G. Lane and B. Smethurst. Lab. Pract. 14, 446 (1965).Google Scholar
  31. 27.
    Flood, H., T. Förland and A. Nesland. Acta Chem. Scand. 5, 1193 (1951).CrossRefGoogle Scholar
  32. 28.
    Flood, H, T. Förland and K. Grjotheim. Z. Anorg. Allgem. Chem. 276, 289 (1954).CrossRefGoogle Scholar
  33. 29.
    Förland, T. J. Phys. Chem. 59, 152 (1955).CrossRefGoogle Scholar
  34. 29a.
    Gaune-Escard, M. J. C. Mathieu and R. Desre. J. Chim. Phys. 9, 1390 and 1397 (1972) and 7–8, 1033 (1973).Google Scholar
  35. 30.
    Goodwin, H. M. and H. T. Kalmus. Phys. Rev. 28, 1 (1909).Google Scholar
  36. 31.
    Grjotheim, K. Thesis, Norges Teckniske Hogskole Trondheim (1956).Google Scholar
  37. 32.
    Haase, R. Z. Naturf. 8a, 380 (1953).Google Scholar
  38. 33.
    Haase, R. J. Phys. Chem. 73, 1160 (1969).CrossRefGoogle Scholar
  39. 34.
    Haber, F. and F. Lowe. Z. Angexv. Chem. 23, 1393 (1910).CrossRefGoogle Scholar
  40. 35.
    Harrison, J. P. Thesis, Paris (1956) and CR Acad. Sci., Paris, 241, 298 (1955).Google Scholar
  41. 36.
    Hovorka, F. and H. Rodebush. J. Amer. Chem. Soc. 47, 1614 (1925).CrossRefGoogle Scholar
  42. 37.
    Jahr, K. F. and R. Kubens. Z. Elektrochem. 56, 65 (1952).Google Scholar
  43. 38.
    Karagunis, G., A. Hawkinson and G. Damköhler. Z. Phys. Chem. 151A, 433 (1930).Google Scholar
  44. 39.
    Kelley, K. K. Bull. US Bur. Min. No. 476 (1949).Google Scholar
  45. 40.
    Kentamaa, J. Suomen Kemistilehti, 29, 59 (1956).Google Scholar
  46. 41.
    Kraus, C. A. and R. A. Vingee. J. Amer. Chem. Soc. 56, 511 (1934).CrossRefGoogle Scholar
  47. 42.
    Lange, J. Z. Phys. Chem. 177A, 193 (1936).Google Scholar
  48. 43.
    Lange, J. and J. Berga. Mh. Chem. 81, 921 (1950).Google Scholar
  49. 44.
    Lange, J. Z. Phys. Chem. 168A, 147 (1934).Google Scholar
  50. 45.
    Lemaire, M. Thesis No. 225 (1956), Faculté des Sciences Lyon, France.Google Scholar
  51. 46.
    Livingston, J., R. Morgan and H. K. Benson. Z. Anorg. Chem. 55, 261 (1908) and J. Amer. Chem. Soc. 29, 1168 (1907).CrossRefGoogle Scholar
  52. 47.
    Livingston, J., R. Morgan and P. T. Owen. Z. Anorg. Chem. 56, 168 (1908) and J. Amer. Chem. Soc. 29, 1439 (1907).CrossRefGoogle Scholar
  53. 48.
    Longuet-Higgins, H. C. Proc. Roy. Soc. (London) A, 205, 247 (1951)CrossRefGoogle Scholar
  54. 49.
    Loomis, E. H. Phys. Rev. 1, 199 (1893).Google Scholar
  55. 50.
    Löwenhertz, R. Z. Phys. Chem. 18, 71 (1895).Google Scholar
  56. 51.
    Lumsden, J. Disc. Faraday Soc. 32, 138 (1961).CrossRefGoogle Scholar
  57. 52.
    Mair, B. J., A. R. Glasgow and F. D. Rossini. J. Res. Nat. Bur. Stand. 26, 591 (1941).CrossRefGoogle Scholar
  58. 53.
    Meyer, R. and J. Metzger. Bull. Soc. Chim. France, 1, 66 (1967).Google Scholar
  59. 54.
    Moser, H. Ann. Phys., Lpz. 5, 343 (1929).Google Scholar
  60. 55.
    Moulin, M. J. Chim. Phys. 8, 321 (1910).Google Scholar
  61. 56.
    Müller, H. Ann. Chim. 8, 143 (1937).Google Scholar
  62. 57.
    Nernst, W. and R. Abegg. Z. Phys. Chem. 15, 681 (1894).Google Scholar
  63. 58.
    Petit, G. La Cryoscopie à Haute Température. Masson: Paris (1965).Google Scholar
  64. 59.
    Ponsot, A. CR Acad. Sci., Paris, 118, 977 (1895).Google Scholar
  65. 60.
    Potier, A. CR Acad. Sci., Paris, 240, 1080 (1955).Google Scholar
  66. 61.
    Prigogine, I. and R. Defay, Chemical Thermodynamics. Longmans Green: New York (1954).Google Scholar
  67. 62.
    Randall, M. and A. P. Vanselow. J. Amer. Chem. Soc. 46, 2418 (1924).CrossRefGoogle Scholar
  68. 63.
    Randall, M. and G. N. Scott. J. Amer. Chem. Soc. 49, 647 (1927).CrossRefGoogle Scholar
  69. 64.
    Raoult, F. M. CR Acad. Sci., Pans, 101, 1056 (1885).Google Scholar
  70. 65.
    Raoult, F. M. Ann. Chim. (Phys.), 6, 289 (1886).Google Scholar
  71. 66.
    Raoult, F. M. Bull. Soc. Chim. France, 3, 21 (1899).Google Scholar
  72. 67.
    Raoult, F. M. Ann. Chim. (Phys.). 2, 99 and 115 (1884).Google Scholar
  73. 68.
    Reiss, H., J. L. Katz and O. J. Kleppa. J. Chem. Phys. 36, 144 (1962).CrossRefGoogle Scholar
  74. 69.
    Robertson, C. and V. K. La Mer. J. Phys. Chem. 35, 1953 (1931).CrossRefGoogle Scholar
  75. 70.
    Roloff, M. Z. Phys. Chem. 18, 572 (1895).Google Scholar
  76. 71.
    Rüdorff, F. Ann. Phys., Lpz. 114, 63 (1861); 116, 55 (1862) and 122, 337 (1864).CrossRefGoogle Scholar
  77. 72.
    Sabbah, R. Thesis. University of Marseille (France) (1965).Google Scholar
  78. 73.
    Scatchard, G. and S. Prentiss. J. Amer. Chem. Soc. 54, 2696 (1932).CrossRefGoogle Scholar
  79. 74.
    Scatchard, G., B. Vonnegut and D. W. Beaumont. J. Chem. Phys. 33, 1292 (1960).CrossRefGoogle Scholar
  80. 75.
    Schwab, F. W. and E. Wichers. J. Res. Nat. Bur. Stand. 34, 33 (1945).CrossRefGoogle Scholar
  81. 76.
    Solomons, C. and G. J. Janz, US Dept. Comm., Wash., Publ. No. 131499 (1957) and Rev. Sci. Instrum.29, 302(l958).Google Scholar
  82. 77.
    Souchay, P. Bull Soc. Chim. France, 15, 143 (1948).Google Scholar
  83. 78.
    Stokes, R. H. and R. A. Robinson. J. Amer. Chem. Soc. 70, 1870 (1948).CrossRefGoogle Scholar
  84. 79.
    Stortenbecker, W. Z. Phys. Chem. 10, 183 (1892).Google Scholar
  85. 80.
    Taylor, W. J. and F. D. Rossini. J. Res. Nat. Bur. Stand. 32, 197 (1944).CrossRefGoogle Scholar
  86. 81.
    Temkin, M. Acta Phys.-Chim. URSS.. 20, 411 (1945).Google Scholar
  87. 82.
    Vallet, C. Thesis. University of Marseille (France) (1970).Google Scholar
  88. 83.
    van Artsdalen, E. R. J. Phys. Chem. 72, 4155 (1968).CrossRefGoogle Scholar
  89. 84.
    van’t Hoff, J. H. Z. Phys. Chem. 1, 481 (1887).Google Scholar
  90. 85.
    Vilcu, R. and C. Misdolea. J. Chem. Phvs. 46, 906 (1967).CrossRefGoogle Scholar
  91. 86.
    von Halban, H. and G. Kortüm. Z. Phys. Chem. 170A, 351 (1934).Google Scholar
  92. 87.
    Waiden, P. Ber. Dtsch. Chem. Ges. 34, 4192 (1901).Google Scholar
  93. 88.
    White, W. P. J. Phys. Chem. 24, 393 (1920).CrossRefGoogle Scholar
  94. 89.
    White, W. P. J. Amer. Chem. Soc. 56, 20 (1934).CrossRefGoogle Scholar
  95. 90.
    Wood, R. H., R. K. Vicker and R. W. Kreis. J. Phys. Chem. 75, 2313 (1971).CrossRefGoogle Scholar
  96. 91.
    Zarzycki, J. Thesis. University of Paris (1953).Google Scholar
  97. 92.
    Zarzycki, J. J. Phys. Radium, 19, 13A (1958).CrossRefGoogle Scholar
  98. 93.
    Zawidski, J. Ber. Dtsch. Chem. Ges. 37, 2294 (1904).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Y. Doucet
    • 1
  1. 1.Laboratoire de ThermodynamiqueUniversité de ProvenceMarseilleFrance

Personalised recommendations