Skip to main content

Reactions of Coordination Compounds in the Solid Phase

  • Chapter
Book cover Coordination Chemistry

Abstract

Many coordination compounds have been found to undergo chemical reactions in the solid phase under relatively mild conditions of pressure and temperature. Some of these reactions are well known and provide convenient synthetic procedures. For example, the common method of preparing cis-[Cr(en)2Cl2]Cl is by thermal deamination of [Cr(en)3]Cl3 in the presence of a catalytic amount of NH4Cl.1 Few detailed studies of these solid-phase reactions have been made, but at least two general reasons can be cited for giving such reactions further consideration. First, there is the question of the mechanisms involved in ligand exchange, racemization, and isomerization in the solid phase in comparison with the ways in which these processes proceed in solution. In some cases, mechanisms proposed for solid-phase reactions clearly differ from mechanisms proposed for corresponding solution reactions. What causes the mechanisms to differ (if, indeed, they do) is not known, but this matter is clearly of interest to our understanding of the factors governing the reaction mechanisms of coordination compounds. Secondly, some of the reactions are of interest as possible model systems for studying the chemical behavior of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Rollinson and J. C. Bailar, Jr., Inorg. Synth. 2: 200 (1946).

    Article  Google Scholar 

  2. J. L. Burmeister, Coord. Chem. Rev. 3: 225 (1968).

    Article  CAS  Google Scholar 

  3. R. T. M. Fraser in “Werner Centenial,” Advances in Chemistry Series No. 62, American Chemical Society, Washington, D.C., 1967, pp. 295–305.

    Google Scholar 

  4. F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, Second ed. John Wiley and Sons, Inc., New York, N.Y. 1967, pp. 291–300.

    Google Scholar 

  5. H. E. LeMay, Jr., Ph.D. Thesis, University of Illinois, 1966.

    Google Scholar 

  6. W. W. Wendlandt and J. P. Smith, The Thermal Properties of Transition-Metal Ammine Complexes, Elsevier Publishing Co., New York, 1967.

    Google Scholar 

  7. W. W. Wendlandt and J. L. Bear, J. Phys. Chem. 65: 1516 (1961).

    Article  CAS  Google Scholar 

  8. M. Mori, R. Tsuchiya, and Y. Okano, Bull. Chem. Soc. Japan 32: 1029 (1959).

    Article  CAS  Google Scholar 

  9. M. Mori and R. Tsuchiya, ibid. 33: 841 (1960).

    Article  CAS  Google Scholar 

  10. E. Lenz and R. K. Murman, Inorg. Chem. 7: 1880 (1968).

    Article  CAS  Google Scholar 

  11. W. W. Wendlandt and J. P. Smith, Nature 201: 291 (1964).

    Article  Google Scholar 

  12. C. H. Langford and H. B. Gray, Ligand Substitution Processes, W. A. Benjamin, Inc., New York, 1965, pp. 85–87.

    Google Scholar 

  13. B. Adell, Z. Anorg. Allg. Chem. 271: 49 (1952).

    Article  CAS  Google Scholar 

  14. C. L. Rollinson and J. C. Bailar, Jr., J. Am. Chem. Soc. 66: 641 (1944).

    Article  CAS  Google Scholar 

  15. T. D. O’Brien and J. C. Bailar, Jr., ibid. 67: 1856 (1945).

    Article  Google Scholar 

  16. J. L. Bear and W. W. Wendlandt, J. Inorg. Nucl. Chem. 17: 286 (1961).

    Article  CAS  Google Scholar 

  17. W. W. Wendlandt and C. H. Strembridge, ibid. 27: 569 (1965).

    Article  Google Scholar 

  18. W. W. Wendlandt and C. H. Strembridge, ibid. 27: 575 (1965).

    Article  CAS  Google Scholar 

  19. W. W. Wendlandt and L. V. Sveum, ibid. 28: 393 (1966).

    Article  CAS  Google Scholar 

  20. C. H. Johnson and A. Mead, Trans. Faraday Soc. 29: 626 (1933).

    Article  CAS  Google Scholar 

  21. C. H. Johnson, ibid. 31: 1612 (1935).

    Article  CAS  Google Scholar 

  22. C. H. Johnson and A. Mead, ibid. 31: 1621 (1935).

    Article  CAS  Google Scholar 

  23. J. Brady, F. Dachille, and C. D. Schmulbach, Inorg. Chem. 2: 803 (1963).

    Article  CAS  Google Scholar 

  24. C. D. Schmulbach, J. Brady, and F. Dachille, ibid. 7:287 (1968).

    Article  CAS  Google Scholar 

  25. C. D. Schmulbach, F. Dachille, and M. E. Bunch, ibid. 3: 808 (1964).

    Article  CAS  Google Scholar 

  26. J. Brady, Ph.D. Thesis, Pennsylvania State University, 1963, pp. 38–40.

    Google Scholar 

  27. A. J. McCaffery and S. F. Mason, Proc. Chem. Soc. 388 (1962).

    Google Scholar 

  28. See D. R. Stranks and R. G. Wilkins, Chem. Rev. 57: 743 (1957).

    Article  CAS  Google Scholar 

  29. F. Basolo, J. Hayes, and H. M. Newmann, J. Am. Chem. Soc. 76: 3807 (1954).

    Article  CAS  Google Scholar 

  30. F. Basolo, J. Hayes, and H. M. Newmann, ibid. 75: 5102 (1953).

    Article  CAS  Google Scholar 

  31. R. G. Wilkins and M. J. G. Williams, J. Chem. Soc. 1763 (1957).

    Google Scholar 

  32. H. E. LeMay, Jr. and J. C. Bailar, Jr., J. Am. Chem. Soc. 90: 1729 (1968).

    Article  CAS  Google Scholar 

  33. C. Kutal and J. C. Bailar, Jr., University of Illinois, personal communication, 1968.

    Google Scholar 

  34. G. B. Schmidt and K. Rossler, Radiochim. Acta 5: 123 (1966).

    CAS  Google Scholar 

  35. K. Rossler and W. Herr, Angew. Chem. (Int.) 6: 993 (1967).

    Google Scholar 

  36. N. I. Labanov, Russ. J. Inorg. Chem. 4: 151 (1959).

    Google Scholar 

  37. H. E. LeMay, Jr. and J. C. Bailar, Jr., J. Am. Chem. Soc. 89: 5577 (1967).

    Article  CAS  Google Scholar 

  38. G. W. Watt and D. A. Butler, Inorg. Chem. 5: 1106 (1966).

    Article  CAS  Google Scholar 

  39. A. Werner and A. Frohlich, Chem. Ber. 40: 2228 (1907).

    Google Scholar 

  40. H. E. LeMay, Jr., unpublished results.

    Google Scholar 

  41. J. P. Mathieu and H. Poulet, J. Chim. Phys. 59: 369 (1962).

    CAS  Google Scholar 

  42. M. E. Baldwin, J. Chem. Soc. 3122 (1961).

    Google Scholar 

  43. R. G. Hayler and F. C. Humiec, Inorg. Chem. 4: 1701 (1965).

    Article  Google Scholar 

  44. D. Forster and D. M. L. Goodgame, ibid. 4: 823 (1965).

    Article  CAS  Google Scholar 

  45. H. E. LeMay, Jr. and J. Sheen, unpublished results.

    Google Scholar 

  46. H. E. LeMay, Jr., Inorg. Chem. 7: 2531 (1968).

    Article  CAS  Google Scholar 

  47. R. G. Pearson, C. R. Boston and F. Basolo, J. Am. Chem. Soc. 75: 3089 (1953).

    Article  CAS  Google Scholar 

  48. R. G. Pearson, P. M. Henry and F. Basolo, ibid. 79, 5379 (1957).

    Article  CAS  Google Scholar 

  49. R. C. Brasted and C. Hirayama, ibid. 80: 788 (1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

LeMay, H.E. (1969). Reactions of Coordination Compounds in the Solid Phase. In: Kirschner, S. (eds) Coordination Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6555-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6555-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6256-0

  • Online ISBN: 978-1-4899-6555-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics