Skip to main content
  • 226 Accesses

Abstract

According to quantum mechanics, an electron represented by the wave function penetrates into classically forbidden region, thus tunnels through a thin potential barrier without acquiring enough energy to pass over the top. If our discussion is limited to the macroscopic potential barriers in the bulk of solids rather than those on the surface or in the atomic or crystal field, tunneling barriers, which we are familiar with, are classified into two categories:

  1. 1)

    interband tunneling in one and the same semiconductor

  2. 2)

    tunneling in conductor-insulator-conductor systems, such as MIM (metal-insulator-metal), MIS (metal-insulator-semiconductor or -semimetal), Schottky junctions, etc.

Sponsored in part by the Army Research Office, Durham, N. C., under Contract DA-31-124-ARO-D-478.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki, Phys. Rev. 109, 603 (1958)

    Article  ADS  Google Scholar 

  2. L. Esaki, Solid State Physics in Electronics and Telecommunications, Proceedings of an International Conference held in Brussels, June 2–7, 1958, edited by M. Desirant and J. L. Michels. Volume 1, Semiconductors, Part 1 (Academic Press, New York, 1960) p. 514.

    Google Scholar 

  3. C. Zener, Proc. Roy. Soc. (London) 145, 523(1934).

    Article  ADS  Google Scholar 

  4. W. V. Houston, Phys. Rev. 57, 184(1940).

    Article  MathSciNet  ADS  Google Scholar 

  5. I. Giaever, Phys. Rev. Letters 5, 147(1960).

    Article  ADS  Google Scholar 

  6. B. D. Josephson, Physics Letters 1, 251(1962).

    Article  ADS  MATH  Google Scholar 

  7. T. Yajima and L. Esaki, J. Phys. Soc. Japan 13, 1281(1958).

    Article  ADS  Google Scholar 

  8. W. A. Harrison, Phys. Rev. 123, 85(1961).

    Article  ADS  Google Scholar 

  9. E. O. Kane, J. Phys. Chem. Solids 12, 181(1959),

    Article  ADS  Google Scholar 

  10. E. O. Kane, and J. Appl. Phys. 32, 83 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. L. Esaki and Y. Miyahara, Solid State Elect. J., 13 (1960).

    Google Scholar 

  12. R. L. Batdorf, G. C. Dacey, R. L. Wallace and D. J. Walsh, J. Appl. Phys. 31, 613(1960).

    Article  ADS  Google Scholar 

  13. N. Holonyak and I. A. Lesk, Proc. IRE 48, 1405(1960).

    Article  Google Scholar 

  14. H. P. Kleinknecht, Solid-State Electronics 2, 133(1961).

    Article  ADS  Google Scholar 

  15. R. H. Rediker and A.R. Calawa, J. Appl. Phys. 32, 2189(1961).

    Article  ADS  Google Scholar 

  16. Lr. Armstrong, IRE Trans. ED-9, 114(1962).

    Google Scholar 

  17. R. F. Rutz, IBM J. Res. Develop. 8, 539(1964).

    Article  Google Scholar 

  18. L. Esaki and Y. Miyahara, unpublished and also Solid State Electronics J., 13 (1960); N. Holonyak, I. A. Lesk, R.N. Hall, J. J. Tiemann and H. Ehrenreich, Phys. Rev. Letters 3, 167 (1959).

    Article  ADS  Google Scholar 

  19. G. G. Macfarlane, T. P. McLean, J. E. Quarrington and V. Roberts, J. Phys. Chem. Solids 8, 388(1959)

    Article  ADS  Google Scholar 

  20. and J. R. Haynes, M. Lax and W. F. Flood, J. Phys. Chem. Solids 8, 392 (1959).

    Article  ADS  Google Scholar 

  21. L. V. Keldysh, Zh. eksper, teor, Fiz. 34, 962(1958). Translation: Soviet Physics-JETP 7, 665 (1958)

    Google Scholar 

  22. E. O. Kane, J. Appl. Phys. 32, 83(1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Kleiman, Phys. Rev. 140, A637 (1965).

    Article  ADS  Google Scholar 

  24. See, for instance, Conference on Electron Tunneling in Solids, Philadelphia (1961), J. Phys. Chem. Solids 23, 173 (1962); Proc. Int. Conf. Semiconductor Physics, Prague (1960); NATO Summer School and Conference on Electron Tunneling in Solids, Riso, Denmark (1967), Proceedings of the Summer School, to be published, and Abstracts in the Conference, Solid State Communications 5, No. 10, i–xvi (1967).

    Google Scholar 

  25. L. V. Keldysh, Zh. eksper, teor, Fiz. 33, 994(1957).

    Google Scholar 

  26. P. J. Price and J. M. Radcliffe, IBM J. Res. Develop. 3, 364 (1959).

    Article  Google Scholar 

  27. D. R. Fredkin and G. H. Wannier, Phys. Rev. 128, 2054 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R. T. Shuey, Phys. Rev. 137, A1268(1965).

    Article  ADS  Google Scholar 

  29. Y. Takeuti and H. Funada, J. Phys. Soc. Japan 20, 1854 (1965).

    Article  ADS  Google Scholar 

  30. W. Franz, Z. Naturforsch 13, 484(1958)

    ADS  MATH  Google Scholar 

  31. L. V. Keldysh, Z. eksper teor. Fiz. 34, 1138 (1958). Translation: Soviet Physics-JETP 7, 788(1958).

    Google Scholar 

  32. J. I. Pankove, Phys. Rev. Letters 9, 283(1962).

    Article  ADS  Google Scholar 

  33. C. T. Sah, Phys. Rev. 123, 1594(1961).

    Article  ADS  Google Scholar 

  34. R. S. Classen, J. Appl. Phys. 32, 2372(1961).

    Article  ADS  Google Scholar 

  35. J. Bardeen, Phys. Rev. Letters 6, 57(1961).

    Article  ADS  Google Scholar 

  36. For instance, Proc. 8th and 9th Int. Conf. on Low Temp. Phys. (London 1962 and Columbus, Ohio, 1964, respectively) and also Ref. 18.

    Google Scholar 

  37. S. von Molnar, W. A. Thompson and A. S. Edelstein, Appl. Phys. Letters 11, 163(1967).

    Article  ADS  Google Scholar 

  38. R. Stratton, J. Phys. Chem. Solids 23, 1177(1962)

    Article  ADS  Google Scholar 

  39. J. G. Simmons, J. Appl. Phys. 34, 1793(1963).

    Article  ADS  Google Scholar 

  40. J. C. Fisher and I. Giaever, J. Appl. Phys. 32, 172(1961)

    Article  ADS  Google Scholar 

  41. D. Meyerhofer and S. A. Ochs, J. Appl. Phys. 34, 2535(1963)

    Article  ADS  Google Scholar 

  42. S. R. Pollack and C. E. Morris, J. Appl. Phys. 35, 1502(1964).

    Article  ADS  Google Scholar 

  43. P. V. Gray, Phys. Rev. 140, A179 (1965).

    Article  ADS  Google Scholar 

  44. L. Esaki and P. J. Stiles, Phys. Rev. Letters 16, 1108(1966)

    Article  ADS  Google Scholar 

  45. L. L. Chang, L. Esaki and F. Jona, Appl. Phys. Letters 9, 21(1966)

    Article  ADS  Google Scholar 

  46. P. J. Stiles, L. Esaki and W. E. Howard, Proc. 10th Int. Conf. Low Temp. Phys., Moscow (1966)

    Google Scholar 

  47. L. Esaki, J. Phys. Soc. Japan 21 (supplement), 589(1966)

    Google Scholar 

  48. L.L. Chang, P. J. Stiles and L. Esaki, J. Appl. Phys. 38, 4440(1967).

    Article  ADS  Google Scholar 

  49. L. Esaki, P. J. Stiles, and L. L. Chang, Phys. Rev. Letters 20, 1108(1968).

    Article  ADS  Google Scholar 

  50. L. Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902(1965).

    Article  ADS  Google Scholar 

  51. L. Esaki and P. J. Stiles, Phys. Rev. Letters 16, 574(1966).

    Article  ADS  Google Scholar 

  52. J. J. Hauser and L. R. Testardi, Phys. Rev. Letters 20, 12 (1968).

    Article  ADS  Google Scholar 

  53. L. Esaki, L. L. Chang, P. J. Stiles, D. F. O’Kane, and N. Wiser, Phys. Rev. 167, 637 (1968).

    Article  ADS  Google Scholar 

  54. J. W. Conley, C. B. Duke, G. D. Mahan, and J. J. Tiemann, Phys. Rev. 150, 466(1966)

    Article  ADS  Google Scholar 

  55. F. A. Padovani and R. Stratton, Solid State Electron. 9, 21 (1966).

    Article  Google Scholar 

  56. G. D. Mahan and J. W. Conley, Appl. Phys. Letters 11, 29 (1967)

    Article  ADS  Google Scholar 

  57. J. W. Conley and G. D. Mahan, Phys. Rev. 161, 681 (1967).

    Article  ADS  Google Scholar 

  58. R. N. Hall, J. H. Racette and H. Ehrenreich, Phys. Rev. Letters 4, 456 (1960).

    Article  ADS  Google Scholar 

  59. C. B. Duke, GE Report 67-C-305 (1967).

    Google Scholar 

  60. R. C. Jaklevic and J. Lamb, Phys. Rev. Letters 17, 1139 (1966).

    Article  ADS  Google Scholar 

  61. W. A. Thompson, Phys. Rev. Letters 20, 1085(1968).

    Article  ADS  Google Scholar 

  62. A. F. G. Wyatt, Phys. Rev. Letters 13, 401 (1964).

    Article  ADS  Google Scholar 

  63. J. M. Rowell and L. Y. L. Shen, Phys. Rev. Letters 17, 15 (1966).

    Article  ADS  Google Scholar 

  64. J. Appelbaum, Phys. Rev. Letters 17, 91(1966)

    Article  ADS  Google Scholar 

  65. P. W. Anderson, Phys. Rev. Letters 17, 95(1966); J. Solyom and A. Zawadowski, KFKl-Report 14(1966), Central Research Institute for Physics, Budapest.

    Article  ADS  Google Scholar 

  66. C. B. Duke, S. D. Silverstein and Alan J. Bennet, Phys. Rev. Letters 19, 315 (1967).

    Article  ADS  Google Scholar 

  67. M. Cardona and D. L. Greenaway, Phys. Rev. 133, A1685 (1964).

    Article  ADS  Google Scholar 

  68. M. H. Cohen, L. M. Falicov and S. Golin, IBM J. Res. Develop. 8, 215 (1964).

    Article  Google Scholar 

  69. R. B. Schoolar and J. N. Zemel, J. Appl. Phys. 35, 1848 (1964).

    Article  ADS  Google Scholar 

  70. D. J. BenDaniel and C. B. Duke, Phys. Rev. 160, 679(1967).

    Article  ADS  Google Scholar 

  71. A. L. Jain, Phys. Rev. 114, 1518(1959)

    Article  ADS  Google Scholar 

  72. D. M. Brown and S. J. Silverman, Phys. Rev. 136, A290(1964).

    Article  MathSciNet  ADS  Google Scholar 

  73. P. J. Stiles, L. Esaki, and J. Schooley, Phys. Letters 23, 206 (1966).

    Article  ADS  Google Scholar 

  74. See, for example, G. Herzberg, Atomic Spectra and Atomic Structure, (Dover, New York, 1944) p. 109.

    Google Scholar 

  75. W. Kohn, Solid State Phys. (Academic Press, New York, 1957) Vol. 5, p. 258.

    Google Scholar 

  76. W. Cockran. R. A. Cowley, G. Dolling and M. M. Elcombe, Proc. Royal Soc. London 293A, 433(1966).

    Article  ADS  Google Scholar 

  77. J. R. Dixon and H. R. Rieale, Phys. Rev. 138A, 873(1965).

    Article  ADS  Google Scholar 

  78. J. N. Zemel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. 140A, 330 (1965).

    Article  ADS  Google Scholar 

  79. K. F. Cuff, M. R. Ellet, C. D. Kuglin, and L. R. Williams, Proc. International Conf. Phys. Semiconductors, Paris (1964) (Academic Press, New York, 1964) p. 677.

    Google Scholar 

  80. C. K. N. Patel and R. E. Slusher, Bull. Am. Phys. Soc. 13, 480 (1968).

    Google Scholar 

  81. L. M. Roth, Phys. Rev. 118, 1534(1960).

    Article  ADS  Google Scholar 

  82. W. W. Scalon, Solid State Phys. (Academic Press, New York 1959) Vol. 9, p. 83.

    Google Scholar 

  83. L. Esaki, P. J. Stiles, and S. von Molnar, Phys. Rev. Letters 19, 539 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esaki, L. (1969). Tunneling in Solids. In: Haidemenakis, E.D. (eds) Electronic Structures in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6537-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6537-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6250-8

  • Online ISBN: 978-1-4899-6537-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics