Skip to main content

Field Evaporation

  • Chapter
Field-Ion Microscopy

Abstract

By applying an electric field to the tip of a field-ion microscope specimen it is possible to evaporate protruding surface atoms as ions. This process, known as field evaporation,1 is thermally activated and has an activation energy dependent on the applied field strength. At a sufficiently high field strength the activation energy can be reduced to an arbitrarily low value, and so field evaooration can be made to take place at any temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller, E. W., Phys. Rev. 102: 618 (1956).

    Article  Google Scholar 

  2. Müller, E. W., Advan. Electron. Electron Phys. 13: 83 (1960).

    Article  Google Scholar 

  3. Müller, E. W., in: Structure and Properties of Thin Films, C. A. Neugebauer, J. D. Newkirk, and D. A. Vermilyea, eds., Wiley (New York), 1959, p. 476.

    Google Scholar 

  4. S. S. Brenner, in: High-Temperature and High-Resolution Metallography, G. S. Ansell and H. I. Aaronson, eds., Gordon & Breach (New York), 1967 [Vol. 38 of the Met. Soc. Conf, (Chicago, Feb. 1965)].

    Google Scholar 

  5. H. Utsugi and R. Gomer, J. Chem. Phys. 37: 1706 (1962).

    Article  CAS  Google Scholar 

  6. H. Utsugi and R. Gomer, J. Chem. Phys. 37: 1720 (1962).

    Article  CAS  Google Scholar 

  7. L. W. Swanson and R. Gomer, J. Chem. Phys. 39: 2813 (1963).

    Article  CAS  Google Scholar 

  8. L. W. Swanson, R. W. Strayer, and F. J. Charbonnier, Surface Science 2: 177 (1964).

    Article  CAS  Google Scholar 

  9. R. Gomer, J. Chem. Phys. 31: 341 (1959).

    Article  CAS  Google Scholar 

  10. R. Gomer and L. W. Swanson, J. Chem. Phys. 38: 1613 (1963).

    Article  CAS  Google Scholar 

  11. Brandon, D. G, Surface Science 3: 1 (1965).

    Article  Google Scholar 

  12. Brandon, D. G, Phil. Mag. 14: 803 (1966).

    Article  CAS  Google Scholar 

  13. Brandon, D. G, Surface Science 5: 137 (1966).

    Article  CAS  Google Scholar 

  14. S. Glasstone, K. J. Laidler, and H, Eyring, The Theory of Rate Processes, McGraw Hill (New York), 1941.

    Google Scholar 

  15. Brandon, D. G., Brit. J. Appl. Phys. 14: 474 (1963).

    Article  CAS  Google Scholar 

  16. G. Ehrlich, Brit. J. Appl. Phys. 15: 349 (1964).

    Article  CAS  Google Scholar 

  17. O. Kubaschewski and E. LI. Evans, Metallurgical Thermochemistry, Pergamon Press (London), 1958.

    Google Scholar 

  18. O. Kubaschewski, Landolt-Bornstein, Tables II, 2(b) (1962), p. 2–1.

    Google Scholar 

  19. O. Kubaschewski, Landolt-Bornstein, Tables II, 4 (1962), p. 837.

    Google Scholar 

  20. J. F. Mulson and E. W. Müller, J. Chem. Phys. 38: 2615 (1963).

    Article  CAS  Google Scholar 

  21. R. Gomer, Field Emission and Field Ionization, Harvard University Press (Cambridge, Mass.), 1961, p. 45.

    Google Scholar 

  22. W. P. Dyke and W. W. Dolan, Advan. Electron. Electron Phys. 8: 89 (1956).

    Article  CAS  Google Scholar 

  23. M. Drechsler and P. Wolf, Proc. 4th Intern. Conf. Electron Microscopy, Berlin, 1958, Vol. 1, p. 835.

    Google Scholar 

  24. R. Gomer, Field Emission and Field Ionization, Harvard University Press (Cambridge, Mass.), 1961, p. 47.

    Google Scholar 

  25. E. W. Müller and R. D. Young, J. Appl. Phys. 32: 2425 (1961).

    Article  Google Scholar 

  26. A. G. J. van Oostrom, Doctoral thesis, University of Amsterdam, 1965, p. 67.

    Google Scholar 

  27. R. Smoluchowski, Phys. Rev. 60: 661 (1941).

    Article  CAS  Google Scholar 

  28. J. Friedel, Advan. Phys. 3: 446 (1954).

    Article  Google Scholar 

  29. Moore, A. J. W, J. Phys. Chem. Solids 23: 907 (1962).

    Article  CAS  Google Scholar 

  30. Müller, E. W., Surface Science 2: 484 (1964).

    Article  Google Scholar 

  31. M. K. Sinha and E. W. Müller, J. Appl. Phys. 35: 1256 (1964).

    Article  CAS  Google Scholar 

  32. D. G. Brandon and M. Wald, Phil. Mag. 6: 1035 (1961).

    Article  Google Scholar 

  33. H. Ryan and J. C. Suiter, J. Less-Common Metals, (1965).

    Google Scholar 

  34. D. G. Brandon, S. Ranganathan, B. Ralph, and M. Wald, Acta Met. 12: 813 (1964).

    Article  Google Scholar 

  35. B. Ralph and D. G. Brandon, Phil. Mag. 8: 919 (1963).

    Article  CAS  Google Scholar 

  36. Müller, E. W., J. Phys. Soc. Japan 18 (II): 1 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brandon, D.G. (1968). Field Evaporation. In: Hren, J.J., Ranganathan, S. (eds) Field-Ion Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6513-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6513-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6241-6

  • Online ISBN: 978-1-4899-6513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics