Skip to main content

Guidance and Control in Supercircular Atmosphere Entry

  • Conference paper
Peaceful Uses of Automation in Outer Space
  • 134 Accesses

Abstract

This paper discusses planetary entry maneuvers which include atmospheric capture for Mars entry velocities up to 12 km/sec; atmospheric capture for Earth entry velocities up to 21 km/sec; skipout control to either a parking orbit or extended ranges; and terminal range control. Simulator results are compared for both automatic and piloted-guidance systems. The results are presented to illustrate the expected guidance performance as compared with the vehicle’s full capabilities. Several factors considered are the control response requirements, the effect of measurement errors and atmosphere uncertainties, and the effect of various display and control techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon., “EMPIRE — A Study of Early Manned Interplanetary Missions,” NASA-MSFC Contract 8-5025, Aeronutronic Div. of Ford Motor Co., Pub. U-1951, Dec., 1962.

    Google Scholar 

  2. Himmel, S. C., Dugan, J. F., Jr., Luidens, R. W., and Weber, R. J., “A Study of Manned Nuclear-Rocket Missions to Mars,” IAS Paper 61-49.

    Google Scholar 

  3. Anon., “A Study of Early Manned Interplanetary Missions — Final Summary Report,” NASA-MSFC Contract MS 8-5026, General Dynamics/Astronautics, Rep. AOK 63-0001, Jan., 1963.

    Google Scholar 

  4. Anon., “Manned Interplanetary Mission Study — Summary Report — Volume I,” NASA-MSFC Contract NAS 8-5024, Lockheed Missiles and Space Co., Rep. 8-32-63, March, 1963.

    Google Scholar 

  5. Jones, A. L., ed., “Manned Mars Landing and Return Mission Study — Final Report,” NASA-Ames Research Center, Contract NAS 2-1408, North American Aviation, Inc., Space and Information Div., Rep. SID 64-619, March, 1964.

    Google Scholar 

  6. Sohn, R. L., ed., “Manned Mars Landing and Return Mission,” NASA-Ames Research Center, Contract NAS 2-1409, TRW Space Technology Laboratories, Rep. 8572-6011-RV-000, March, 1964.

    Google Scholar 

  7. Anon., “Preliminary Design of a Mars-Mission Earth Reentry Module — Final Report,” NASA-MSC Contract NAS 9-1702, Lockheed Missiles and Space Co., Rep. 4-57-69-1, Feb., 1964.

    Google Scholar 

  8. Shopland, D. J., Price, D. A., and Hearne, L. F., “A Configuration for Re-entry From Mars Missions Using Aerobraking,” AIAA Paper 64-480.

    Google Scholar 

  9. Wong, T. J., and Anderson, J. L., “A Preliminary Study of Spacecraft for Manned Mars Orbiting and Landing Missions,” SAE-ASME National Air Transport and Space Meeting, New York, N. Y., April 27–30, 1964.

    Google Scholar 

  10. Pritchard, Brian E., “Survey of Velocity Requirements and Reentry Flight Mechanics for Manned Mars Missions,” AIAA Paper 64-13.

    Google Scholar 

  11. Syvertson, C. A., and Dennis, David H., “Trends in High-Speed Atmospheric Flight,” AIAA Paper 64-514.

    Google Scholar 

  12. Sohn, Robert L., “Manned Mars Trips Using Venus Swingby Mode,” Proc. AIAA/NASA Third Manned Spaceflight Meeting (Houston, Texas, Nov. 4–6, 1964) pp. 330-338. AIAA Pub. CP-10, 1964.

    Google Scholar 

  13. Chapman, D. R., An Analysis of the Corridor and Guidance Requirements for Supercircular Entry Into Planetary Atmospheres, NASA TR R-55, 1960.

    Google Scholar 

  14. Wingrove, R. C., and Coate, R. E., Piloted Simulator Tests of a Guidance System Which Can Continuously Predict Landing Point of a Low L/D Vehicle During Atmosphere Re-entry, NASA TN D-787, 1961.

    Google Scholar 

  15. Dow, P. C., Jr., Fields, D. P., and Scammell, F. H., “Automatic Re-entry Guidance at Escape Velocity,” ARS Preprint 1946-61.

    Google Scholar 

  16. White, Jack A., Foudriat, E. C., and Young, J. W., “Guidance of a Space Vehicle to a Desired Point on the Earth’s Surface,” Am. Astronaut. Soc. Preprint 61-41.

    Google Scholar 

  17. Foudriat, E. C., and Wingrove, R. C., Guidance and Control During Direct-Descent Parabolic Reentry, NASA TN D-979, 1961.

    Google Scholar 

  18. Young, John W., and Russell, Walter R., Fixed-Base-Simulator Study of Piloted Entries Into the Earth’s Atmosphere for a Capsule-Type Vehicle at Parabolic Velocity, NASA TN D-1479, 1962.

    Google Scholar 

  19. Friedenthal, M. J., “Control of Re-entry Prom Orbit,” Transactions of the 7th Symposium on Ballistic Missile and Space Technology (Air Force Systems Command for Aerospace Systems and Aerospace Corp., Los Angeles, Calif., 1962), Vol. II, pp. 33-87.

    Google Scholar 

  20. Wingrove, R. C., A Study of Guidance to Reference Trajectories for Lifting Reentry at Supercircular Velocity, MSA TR R-151, 1963.

    Google Scholar 

  21. Bryant, J. P., and Frank, M. P., “An Automatic Long Range Guidance System for a Vehicle Entering at Parabolic Velocity,” IAS Paper 62-87.

    Google Scholar 

  22. Anon., “A Study of Energy Management Techniques for a High Lift Vehicle,” General Electric Co., Air Force Systems Command Tech. Doc. Rep. ASD-TER-62-77, Vols. 1 and 2, June, 1962.

    Google Scholar 

  23. Austin, Robert W., and Ryken, John M., Trajectory Control and Energy Management of Lifting Reentry Vehicles. Vol. 16 of Advances in the Astronautical Sciences, Sept., 1963, pp. 829-866.

    Google Scholar 

  24. Volgenau, E., Boost Glide and Reentry Control, Chapter 11, Guidance and Control of Aerospace Vehicles, McGraw-Hill Book Company, Inc., New York, 1963.

    Google Scholar 

  25. Wingrove, Rodney C., “A Survey of Atmosphere Re-Entry Guidance and Control Methods,” IAS Paper 63-86 (AIAA Journal, Vol. 1, No. 9, Sept., 1963, pp. 2019–2029).

    Article  Google Scholar 

  26. Lessing, Henry C., Tunnell, Phillips J., and Coate, Robert E., “Lunar Landing and Long-Range Earth Reentry Guidance by Application of Perturbation Theory,” Second Manned Spaceflight Meeting, Dallas, Texas, April 22–24, 1963, pp. 140-150 (AIAA, Dallas, Texas, 1963).

    Google Scholar 

  27. Wingrove, Rodney C., Stinnett, Glen W., and Innis, Robert C., A Study of the Pilot’s Ability to Control an Apollo Type Vehicle During Atmosphere Entry, NASA TN D-2467, 1964.

    Google Scholar 

  28. Tannas, Lawrence E., “A Manual Guidance Scheme for Supercircular Entries,” Proc. AIAA/NASA Third Manned Spaceflight Meeting (Houston, Texas, Nov. 4–6, 1964) pp. 79-95. AIAA Pub. CP-10, 1964.

    Google Scholar 

  29. Wingrove, Rodney C., “Trajectory Control Problems in the Planetary Entry of Manned Vehicles. Proc. AIAA Entry Technology Conf. (AIAA, Williamsburg and Hampton, Virginia, Oct. 12–14, 1964) pp. 22-33. AIAA CP-9, 1964.

    Google Scholar 

  30. Morth, Raymond, and Speyer, Jason L., “Divergence From Equilibrium Glide Path at Supersatellite Velocities,” ARS Journal, Vol. 13, No. 3, March, 1961, pp. 448–450.

    Article  Google Scholar 

  31. Porter, R. F., “The Linearized Long-Period Longitudinal Modes of Aerospace Vehicles in Equilibrium Flight,” Air Force Flight Test Center, TN 61-2, Jan., 1961.

    Google Scholar 

  32. Etkin, Bernard, “Longitudinal Dynamics of a Lifting Vehicle in a Circular Orbit,” Air Force Office Sci. Res., TN 60-191, Feb., 1960; also, Journal Aerospace Sci., Vol. 28, 1961, pp. 779–788, 832.

    Article  MathSciNet  MATH  Google Scholar 

  33. Breakwell, John V., Helgustam, Lars F., and Krop, Martin A., “Guidance Phenomena for a Mars Mission,” AAS Symposium on Exploration of Mars, Denver, Colorado, June, 1963.

    Google Scholar 

  34. Hanley, Gerald M., and Lyon, Frank J., “The Feasibility of Spacecraft Deceleration by Aerodynamic Braking at the Planet Mars,” AIAA Paper 64-479.

    Google Scholar 

  35. Napolin, A. L., and Mendez, J. C., “Target Orbit Selection for Mars Missions Using Aerodynamic Maneuvering,” AIAA Paper 64-14.

    Google Scholar 

  36. Finch, Thomas W., “Aerodynamic Braking Trajectories for Planetary Orbit Attainment,” AIAA Paper 64-478.

    Google Scholar 

  37. Hansen, Q. Marion, White, John S., and Pang, Albert Y., Study of Inertial Navigation Errors During Reentry to the Earth’s Surface, NASA TN D-1772, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Wingrove, R.C. (1966). Guidance and Control in Supercircular Atmosphere Entry. In: Aseltine, J.A. (eds) Peaceful Uses of Automation in Outer Space. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6411-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6411-3_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6203-4

  • Online ISBN: 978-1-4899-6411-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics