Skip to main content

Grain Boundary and Surface Influence on Mechanical Behavior of Refractory Oxides — Experimental and Deductive Evidence

  • Conference paper
The Role of Grain Boundaries and Surfaces in Ceramics

Part of the book series: Materials Science Research ((MSR))

  • 119 Accesses

Abstract

A model for grain boundaries of MgO, Al2O3, and BeO is postulated and tested against empirical elastic, plastic flow, and fracture data. Descriptions of the various atomistic processes are given and are found to be consistent with experience. New conclusions are reached concerning the strengthening of ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Rice, Boeing Co., unpublished manuscript, presented at 15th Pacific Coast Regional Meeting, American Ceramic Society, Seattle, Washington, October 1962.

    Google Scholar 

  2. J. J. Gilman, “Mechanical Behavior of Crystalline Solids,” Natl. Bur. Std. Monograph 59: 79 (1963).

    Google Scholar 

  3. W.M. Lomer and J. F. Nye, Proc. Roy. Soc. (London) A212: 576 (1952).

    Article  Google Scholar 

  4. S. Amelinckx and W. Dekeyser, Solid State Physics, Vol. 8, Academic Press, (New York), 1959, p. 325.

    Google Scholar 

  5. N. F. Mott, Proc. Phys. Soc. (London) 60: 391 (1948).

    Article  MATH  Google Scholar 

  6. W.D. Kingery, Introduction to Ceramics, John Wiley and Sons, (New York), 1960, p. 199.

    Google Scholar 

  7. D.H. Bowen and F. J.P. Clarke, Phil. Mag. 8: 1257 (1963).

    Article  Google Scholar 

  8. S. B. Austerman, presented at the International Conference on Beryllium Oxide, Sydney, Australia, October 1963, to be published. See also USAEC Reports NAA-SR-8056 (1963), NAA-SR-8235 (1963), and NAA-SR-8361 (1963).

    Google Scholar 

  9. P. J. Jorgensen and J.H. Westbrook, J. Am. Ceram. Soc. 47: 332 (1964).

    Article  Google Scholar 

  10. S. C. Carniglia, presented at the International Conference on Beryllium Oxide, Sydney, Australia, October 1963, to be published.

    Google Scholar 

  11. M.O. Davies, J. Chem. Phys. 38: 2047 (1963).

    Article  Google Scholar 

  12. Y. Oishi and W.D. Kingery, J. Chem. Phys. 33: 480 (1960).

    Article  Google Scholar 

  13. A. E. Paladino and W.D. Kingery, J. Chem. Phys. 37: 957 (1962).

    Article  Google Scholar 

  14. S.B. Austerman, presented at the International Conference on Beryllium Oxide, Sydney, Australia, October 1963, to be published. See also USAEC Reports NAA-SR-3170 (1958), NAA-SR-5893 (1961), NAA-SR-6427 (1961), and NAA-SR-7637 (1962).

    Google Scholar 

  15. D. H. Chung and W. G. Lawrence, J. Am. Ceram. Soc. 47: 448 (1964).

    Article  Google Scholar 

  16. J.B. Wachtman, Jr., W. E. Tafft, D.G. Lam, Jr., and R. P. Stinchfield, J. Res. Nat. Bur. Std. 64A: 213 (1960).

    Article  Google Scholar 

  17. R. Chang, in: W. W. Kriegel and H. Palmour III (eds.), Mechanical Properties of Engineering Ceramics, Interscience Publishers, (New York), 1961, p. 209.

    Google Scholar 

  18. G.G. Bentle, Atomics International, 1964, to be published.

    Google Scholar 

  19. J. B. Mitchell, R.M. Spriggs, and T. Vasilos, “Microstructure Studies of Polycrystalline Refractory Oxides,” USN Report RAD-TR-63-2 (1963).

    Google Scholar 

  20. W. B. Crandall D.H. Chung, and T. J. Gray, in: W. W. Kriegel and H. Palmour III (eds.), Mechanical Properties of Engineering Ceramics, Interscience Publishers, (New York), 1961, p. 349.

    Google Scholar 

  21. R.M. Spriggs, J.B. Mitchell, and T. Vasilos, J.Am. Ceram. Soc. 47: 323 (1964).

    Article  Google Scholar 

  22. S.C. Carniglia and J.E. Hove, J. Nucl. Mater. 4: 165 (1961).

    Article  Google Scholar 

  23. R.E. Fryxell and B. A. Chandler, J. Am. Ceram. Soc. 47: 283 (1964).

    Article  Google Scholar 

  24. C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, 1948, p. 150.

    Google Scholar 

  25. R. Chang, J. Nucl. Mater. 1: 174 (1959). See also USAEC Report NAA-SR-2770 (1958).

    Article  Google Scholar 

  26. R. Chang and L. J. Graham, “Transient Creep and Associated Grain Boundary Phenomena in Polycrystalline Alumina and Beryllia,” USAEC Report NAA-SR-6483 (1961).

    Google Scholar 

  27. R. Chang, “Creep of Polycrystalline BeO at High Temperatures and Low Stresses,” USAEC Report NAA-SR-2458 (1958).

    Google Scholar 

  28. J.B. Wachtman and L.H. Maxwell, USAF Report WADC-TR-57-526 (1957).

    Google Scholar 

  29. J. B. Wachtman and D. G. Lam, J. Am. Ceram. Soc. 42: 254 (1959).

    Article  Google Scholar 

  30. R. C. Folweiler, J. Appl. Phys. 32: 773 (1961).

    Article  Google Scholar 

  31. S. I. Warshaw and F.H. Norton, J. Am. Ceram. Soc. 45: 479 (1962).

    Article  Google Scholar 

  32. R.R. Vandervoort and W. L. Barmore, J. Am. Ceram. Soc. 46: 180 (1963).

    Article  Google Scholar 

  33. M. A. Adams and G.T. Murray, J. Appl. Phys. 33: 2126 (1962).

    Article  Google Scholar 

  34. G.T. Murray and A. J. Mountvala, “The Role of the Grain Boundary in the Deformation of Ceramic Materials,” USAF Report ASD-TDR-62-225, Part 2 (1963); see also Part 1 (1962).

    Google Scholar 

  35. T. Vasilos J.B. Mitchell, and R.M. Spriggs, J. Am. Ceram. Soc. 47: 203 (1964).

    Article  Google Scholar 

  36. R. L. Coble and A. E. Paladino, Massachusetts Institute of Technology, 1964, to be published.

    Google Scholar 

  37. A. E. Gorum, E.R. Parker, and J.A. Pask, J. Am. Ceram. Soc. 41: 161 (1958).

    Article  Google Scholar 

  38. R. B. Day and R. J. Stokes, Honeywell Research Center, 1964.

    Google Scholar 

  39. R. B. Day and R. J. Stokes, “Research Investigation of Mechanical Properties of Selected High-Purity MgO,” USAF Quarterly Report No. 1 under RTD Contract AF 33(615)-1282 (1964).

    Google Scholar 

  40. R. J. Stokes, “Thermal-Mechanical History and the Strength of MgO Single Crystals,” USAF Report HR-64-258 (1964).

    Google Scholar 

  41. R. J. Stokes and C. H. Li, J. Am. Ceram. Soc. 46: 423 (1963).

    Article  Google Scholar 

  42. R. J. Stokes, Trans. AIME 224: 1227 (1962).

    Google Scholar 

  43. R. J. Stokes T.L. Johnston, and C.H. Li, Phil. Mag. 6: 9 (1961).

    Article  Google Scholar 

  44. S.M. Copley and J.A. Pask, “Plastic Deformation of MgO Single Crystals up to 1600°C,” J. Am. Ceram. Soc. 48: 139 (1965).

    Article  Google Scholar 

  45. C.O. Hülse, S.M. Copley, and J.A. Pask, J. Am. Ceram. Soc. 46: 317 (1963).

    Article  Google Scholar 

  46. A.E. Gorum and J. W. Moberly, J. Am. Ceram. Soc. 45: 316 (1962).

    Article  Google Scholar 

  47. R. von Mises, Z. Angew. Math. Mech. 8: 161 (1921).

    Article  Google Scholar 

  48. H. Conrad, “The Mechanical Behavior of Sapphire,” J. Am. Ceram. Soc. 48(4):195–201 (1965).

    Article  Google Scholar 

  49. J.B. Wachtman and L.H. Maxwell, J. Am. Ceram. Soc. 40: 377 (1957).

    Article  Google Scholar 

  50. R. Scheuplein and P. Gibbs, J. Am. Ceram. Soc. 43: 458 (1960).

    Article  Google Scholar 

  51. W. J. Alford and D. L. Stephens, J. Am. Ceram. Soc. 46: 193 (1963).

    Article  Google Scholar 

  52. E. Stofel and H. Conrad, Trans. AIME 227: 1053 (1963).

    Google Scholar 

  53. M. L. Kronberg, J. Am. Ceram. Soc. 45: 274 (1962).

    Article  Google Scholar 

  54. G.G. Bentle and R.M. Kniefel, Atomics International, 1963, to be published.

    Google Scholar 

  55. C. Zener, Fracturing of Metals, ASM, Cleveland (1948).

    Google Scholar 

  56. A.N. Stroh, Proc. Roy. Soc. (London) A223:404 (1954) and A232: 548 (1955).

    Article  Google Scholar 

  57. R. J. Stokes T.L. Johnston, and C.H. Li, Phil. Mag. 3: 718 (1958).

    Article  Google Scholar 

  58. J. Washburn A.E. Gorum, and E. R. Parker, Trans. AIME 215: 230 (1959).

    Google Scholar 

  59. A. S. Argon and E. Orowan, Nature 192: 447 (1961).

    Article  Google Scholar 

  60. R. J. Stokes T.L. Johnston, and C.H. Li, Trans. AIME 218: 655 (1960).

    Google Scholar 

  61. G.D. Miles and F. J.P. Clarke, Phil. Mag. 6: 1449 (1961).

    Article  Google Scholar 

  62. F. J.P. Clarke R.A. J. Sambell, and H.G. Tattersall, Trans. Brit. Ceram. Soc. 61: 61 (1962).

    Google Scholar 

  63. F. J.P. Clarke, R.A. J. Sambell, and G.D. Miles, Trans. Brit. Ceram. Soc. 60: 299 (1961).

    Google Scholar 

  64. A.R.C. Westwood, Phil. Mag. 6: 195 (1961).

    Article  Google Scholar 

  65. T. L. Johnston R.J. Stokes, and C. J. Li, Phil. Mag. 7: 23 (1962).

    Article  Google Scholar 

  66. E.R. Parker, “Mechanical Behavior of Crystalline Solids,” Natl.Bur. Std. Monograph 59: 1 (1963).

    Google Scholar 

  67. F. J.P. Clarke, R.A.J. Sambell, and H.G. Tattersall, Phil. Mag. 7: 393 (1962).

    Article  Google Scholar 

  68. H.G. Tattersall and F. J.P. Clarke, Phil. Mag. 7: 1977 (1962).

    Article  Google Scholar 

  69. A.H. Willis, Atomics International, 1963, to be published.

    Google Scholar 

  70. R. S. Wilks, “The Observation of Dislocations in BeO by Transmission Electron Microscopy,” UKAEA Report AERE-R4436 (1963).

    Google Scholar 

  71. R.W. Guard and P.C. Romo, “X-Ray Microbeam Studies of Fracture Surfaces in Alumina,” J. Am. Ceram. Soc. 48: 7 (1965).

    Article  Google Scholar 

  72. A.A. Griffith, Trans. Roy. Soc. (London) 221: 163 (1920).

    Article  Google Scholar 

  73. E. Orowan, Repts. Prog. Phys. XII:185 (1948).

    Google Scholar 

  74. N. F. Mott, Eng. 16: 2 (1948).

    Google Scholar 

  75. J. Friedel, Fracture, John Wiley and Sons, (New York), 1959, p. 498.

    Google Scholar 

  76. C. Inglis, Trans. Inst. Nav. Archit. (London) 55: 219 (1913).

    Google Scholar 

  77. I.N. Sneddon, Proc. Roy. Soc. (London) A187: 229 (1949).

    MathSciNet  Google Scholar 

  78. E. Stofel and H. Conrad, J. Metals 14: 87 (1962).

    Google Scholar 

  79. W.D. Kingery and R. L. Coble, “Mechanical Behavior of Crystalline Solids,” Natl. Bur. Std. Monograph 59: 103 (1963).

    Google Scholar 

  80. N.J. Petch, J. Iron Steel Inst. 174: 25 (1953).

    Google Scholar 

  81. J.R. Low, Symposium on Relation of Properties to Microstructure, Am. Soc. Metals, 1954, p. 163.

    Google Scholar 

  82. A. Cracknell and N.J. Petch, Acta Met. 3: 186 (1955).

    Article  Google Scholar 

  83. J. Heslop and N.J. Petch, Phil. Mag. 1: 866 (1956).

    Article  Google Scholar 

  84. A.A. Johnson, J. Less Common Metals 2: 241 (1960).

    Article  Google Scholar 

  85. A.N. Stroh, Advan. Phys. 6: 418 (1958).

    Article  Google Scholar 

  86. A.H. Cottrell, Trans. Met. Soc. AIME 212: 192 (1958).

    Google Scholar 

  87. A.A. Johnson, Phil. Mag. 7: 177 (1962).

    Article  Google Scholar 

  88. J.R. Low, IUTAM Colloquium on Deformation and Flow of Solids, Springer-Verlag, (Berlin), 1956, p. 60.

    Google Scholar 

  89. N.J. Petch, Fracture, John Wiley and Sons, (New York), 1959, p. 54.

    Google Scholar 

  90. N. P. Allen, Fracture, John Wiley and Sons, (New York), 1959, p. 123.

    Google Scholar 

  91. A.A. Johnson and B. J. Shaw, Nature 183: 1541 (1959).

    Google Scholar 

  92. G. T. Hahn B.L. Averbach W.S. Owen, and M. Cohen, Fracture, John Wiley and Sons, (New York), 1959, p. 91.

    Google Scholar 

  93. N.M. Parikh, “Studies of the Brittle Behavior of Ceramic Materials,” USAF Report ASD-TR-61-628, Part III (1964), p. 17.

    Google Scholar 

  94. R. Hanna and W. B. Crandall, “Dissipation of Energy by the Grain Boundaries,” ASTIA Report 274956 (1962).

    Google Scholar 

  95. P. R. V. Evans, “Studies of the Brittle Behavior of Ceramic Materials,” USAF Report ASD-TR-61-628, Part II (1963), p. 164.

    Google Scholar 

  96. R. C. Ku and T. L. Johnston, Phil. Mag. 9: 231 (1964).

    Article  Google Scholar 

  97. R.A.J. Sambell and R. Bradley, Phil. Mag. 9: 161 (1964).

    Article  Google Scholar 

  98. R.M. Spriggs, private communication, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Carniglia, S.C. (1966). Grain Boundary and Surface Influence on Mechanical Behavior of Refractory Oxides — Experimental and Deductive Evidence. In: Kriegel, W.W., Palmour, H. (eds) The Role of Grain Boundaries and Surfaces in Ceramics. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6311-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6311-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6162-4

  • Online ISBN: 978-1-4899-6311-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics