Skip to main content

Grain Boundaries and the Mechanical Behavior of Magnesium Oxide

  • Conference paper
  • 113 Accesses

Part of the book series: Materials Science Research ((MSR))

Abstract

A comparison of the mechanical behavior of magnesium oxide single crystals and polycrystals at different temperatures is presented. Single crystals show increasing interpenetrability and multiplicity of slip systems at elevated temperatures. Above 1700°C, slip is very flexible, i.e., slip systems with different Burgers vectors completely interpenetrate each other and slip occurs over a variety of slip planes. Furthermore, above 1600°C, rearrangement of dislocations by polygonization is observed, and, in certain cases, recrystallization can be obtained. Polycrystals prepared by the recrystallization of single crystals show a brittle-to-ductile transition with increasing temperatures. At low temperatures, any structural discontinuity capable of blocking slip dislocations, including subgrain and grain boundaries, induces cleavage crack nucleation and brittle fracture. At intermediate temperatures (i.e., 1400 – 1700°C), more slip occurs, but it is not flexible enough for grains to conform to each other’s change in shape, and constraints develop which can be relaxed only by intergranular sliding. This leads to intergranular crack nucleation and brittle fracture. At elevated temperatures (i.e., above 1700°C), slip is very flexible, and the polycrystalline matrix deforms plastically and necks down to a ductile fracture. Polygonization and recrystallization of the deforming grains also contribute to relaxation of internal stresses. These high-temperature deformation processes are remarkably similar to face-centered cubic metals undergoing creep. Slight porosity causes an increase in the brittle-to-ductile transition temperature. While high-density, hot-pressed magnesia shows plasticity above 2000°C, it is limited by intergranular failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Stokes and C.H. Li, “Dislocations and the Tensile Strength of Magnesium Oxide,” J. Am. Ceram. Soc. 46: 423 (1963).

    Article  Google Scholar 

  2. R.B. Day and R. J. Stokes, “Mechanical Behavior of Magnesium Oxide at High Temperatures,” J. Am. Ceram. Soc. 47: 493 (1964).

    Article  Google Scholar 

  3. C.O. Hulse, S.M. Copley, and J.A. Pask, “Effect of Crystal Orientation on Plastic Deformation of Magnesium Oxide,” J. Am. Ceram. Soc. 46: 317 (1963).

    Article  Google Scholar 

  4. S. M. Copley and J. A. Pask, “Plastic Deformation of MgO Single Crystals Up to 1600°C,” J. Am. Ceram. Soc. 48: 139 (1965).

    Article  Google Scholar 

  5. S. M. Copley and J. A. Pask, “Deformation of Polycrystalline Ceramics,” this volume, Chapter 13.

    Google Scholar 

  6. R.D. Carnahan T.L. Johnston, R.J. Stokes, and C.H. Li, “Effect of Grain Size on the Deformation of Silver Chloride at Various Temperatures,” Trans AIME 221: 45 (1961).

    Google Scholar 

  7. R.J. Stokes and C.H. Li, “Dislocations and the Strength of Polycrystalline Ceramics,” in: H.H. Stadelmaier and W.W. Austin (eds.), Materials Science Research, Vol. 1, Plenum Press, (New York), 1963, p. 133.

    Chapter  Google Scholar 

  8. D. W. Budworth and J. A. Pask, “Effect of Temperature on the Plasticity of Polycrystalline Lithium Fluoride,” Trans. Brit. Ceram. Soc. 62: 763 (1963).

    Google Scholar 

  9. D.W. Budworth and J.A. Pask, “Flow Stress on the {100} and {110} Planes in LiF, and the Plasticity of Polycrystals,” J. Am. Ceram. Soc. 46: 560 (1963).

    Article  Google Scholar 

  10. P. L. Pratt, C. Roy, and A.G. Evans, “The Role of Grain Boundaries in the Plastic Deformation of Calcium Fluoride,” this volume, Chapter 14.

    Google Scholar 

  11. S. Amelinckx, “The Direct Observation of Dislocation Patterns in Transparent Crystals,” in: J.C. Fisher, W. G. Johnston, R. Thompson, and T. Vreeland, Jr. (eds.), John Wiley & Sons, Inc., (New York), 1957, p. 3.

    Google Scholar 

  12. S. Amelinckx, “Dislocations in Ionic Crystals,” Nuovo Cimento, Supplement 2, 7: 569 (1958).

    Article  Google Scholar 

  13. S. Amelinckx, “Dislocations in Ionic Crystals: I. Geometry of Dislocations,” in: W.W. Kriegel and H. Palmour, III (eds.), Mechanical Properties of Engineering Ceramics, Interscience, (New York), 1961, p. 9.

    Google Scholar 

  14. R.J. Stokes, “Dislocation Source and the Strength of Magnesium Oxide Single Crystals,” Trans. AIME 224: 1227 (1962).

    Google Scholar 

  15. G.W. Groves and A. Kelly, “Independent Slip Systems in Crystals,” Phil. Mag. 8: 837 (1963).

    Google Scholar 

  16. M. A. Adams and G.T. Murray, “Direct Observations of Grain Boundary Sliding in Bicrystals of Sodium Chloride and Magnesia,” J. Appl. Phys. 33: 2126 (1962).

    Article  Google Scholar 

  17. G.T. Murray J. Silgalis, and A. J. Mountvala, “Creep Rupture Behavior of MgO Bicrystals,” J. Am. Ceram. Soc. 47: 531 (1964).

    Article  Google Scholar 

  18. R.L. Cummerow, “High-Temperature Steady-State Creep Rate in Single-Crystal MgO,” J. Appl. Phys. 34: 1724 (1963).

    Article  Google Scholar 

  19. R.C. Folweiler, “Creep Behavior of Pore-Free Polycrystalline Aluminum Oxide,” J. Appl. Phys. 32: 773 (1961).

    Article  Google Scholar 

  20. J.E. Burke, “Grain Boundary Effects in Ceramics,” in: H. H. Stadelmaier and W.W. Austin (eds.), Material Science Research, Vol. 1, Plenum Press, (New York), 1963, p. 69.

    Chapter  Google Scholar 

  21. R.J. Stokes, “Correlation of Mechanical Properties with Microstructure,” in: Micro-structure of Ceramic Materials, National Bureau of Standards Miscellaneous Publication No. 257, 1964, p. 41.

    Google Scholar 

  22. H. Brunner and N.J. Grant, “Deformation Resulting from Grain Boundary Sliding,” Trans. AIME 215: 48 (1959).

    Google Scholar 

  23. H. Brunner and N.J. Grant, “Measurement of Deformation Resulting from Grain Boundary Sliding in Aluminum and Aluminum-Magnesium from 410°F to 940°F,” Trans. AIME 218: 122 (1960).

    Google Scholar 

  24. D. McLean, “Creep Processes in Coarse-Grained Aluminum,” J. Inst. Metals 80:507 (1951–2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Day, R.B., Stokes, R.J. (1966). Grain Boundaries and the Mechanical Behavior of Magnesium Oxide. In: Kriegel, W.W., Palmour, H. (eds) The Role of Grain Boundaries and Surfaces in Ceramics. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6311-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6311-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6162-4

  • Online ISBN: 978-1-4899-6311-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics