Skip to main content

Chemical Hazards

  • Chapter
  • 96 Accesses

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

Perhaps the most common but least understood hazard is that associated with exothermic chemical reactions. Such reactions may occur with certain combinations of cryogenic fluids and with cryogenic fluids in contact with their surroundings (e.g., liquid hydrogen-solid oxygen; gaseous hydrogen-air; methane-fluorine; liquid oxygen-oil). Theoretically, these reactions can occur at any given temperature T, and pressure P, if

$$\Delta {F_{{T,P}}} = \Delta H - T\Delta S < 0$$
((4.1))

where ΔF, ΔH, and ΔS are the free energy, enthalpy, and entropy changes, respectively. This equation gives the condition for stability of a chemical system; however, it gives no information on the rate at which a reaction occurs. For many reactions this rate is determined in part by the temperature and the activation energy E. According to the Arrhenius theory,1–3 the rate of an elementary reaction is

$$w = k{e^{{ - E/RT}}}$$
((4.2))

where κ is a constant, E is the activation energy, and R is the molar gas constant. The exponential term is the fraction of active molecules with energy in excess of E.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. N. Hinshelwood, The Kinetics of Chemical Change, Oxford University Press, Oxford, 1940, pp. 1–69.

    Google Scholar 

  2. Robert N. Pease, Equilibrium and Kinetics of Gas Reactions, Princeton University Press, Princeton, N.J., 1942, pp. 1–95.

    Google Scholar 

  3. A. S. Sokolik, Self-Ignition, Flame and Detonation in Gases (translated from the Russian), Office of Technical Services, Washington, D.C., 1963, pp. 1–30.

    Google Scholar 

  4. Bernard Lewis, and Guenther von Elbe, Combustion, Flames and Explosions of Gases, 2nd Ed., Academic Press, Inc., New York, 1961, 731 pp.

    Google Scholar 

  5. P. G. Guest, V. W. Sikora, and Bernard Lewis, Static Electricity in Hospital Operating Suites; Direct and Related Hazards and Pertinent Remedies, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 4833, Pittsburgh, 1952, 64 pp.

    Google Scholar 

  6. Michael G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors, Bureau of Mines Bulletin 627, U.S. Government Printing Office, Washington, D.C., 1965, pp. 1–121.

    Google Scholar 

  7. N. N. Semenov, Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton Univ. Press, Princeton, N.J., 1959, 331 pp.

    Google Scholar 

  8. Loren E. Bollinger, Michael C. Fong, and Rudolph Edse, Experimental Measurements and Theoretical Analysis of Detonation Induction Distances ARS Journal, 1961, pp. 588–595.

    Google Scholar 

  9. Loren E. Bollinger, Experimental Detonation Velocities and Induction Distances in Hydrogen-Air Mixtures, AIAA Journal, 2:131–133 (1964).

    Article  Google Scholar 

  10. Bernard T. Wolfson, Harnessing Explosives, Office of Aerospace Res. Rept. No. 17, 1962, pp. 3–4.

    Google Scholar 

  11. N. Manson and F. Ferrie, Contribution to the Study of Spherical Detonation Waves, in: Fourth Symposium (Internat.) on Combustion, The Williams and Wilkins Co., Baltimore, 1953, pp. 486–494.

    Google Scholar 

  12. S. M. Kogarko, Detonation of Methane-Air Mixtures and the Detonation Limits of Hydrocarbon-Air Mixtures in a Large-Diameter Pipe, Soviet Physics, Tech. Phys., 3:1904–1916 (1958). (Transi, of J. Tech. Phys., USSR, 28:2072–2078).

    Google Scholar 

  13. L. H. Cassutt, F. E. Maddocks, and W. A. Sawyer, A Study of the Hazards in the Storage and Handling of Liquid Hydrogen, in: K. D. Timmerhaus (ed.), Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York, 1960, pp. 55–61.

    Google Scholar 

  14. E. L. Litchfield, M. H. Hay, and D. R. Forshey, Direct Electrical Initiation of Freely Expanding Gaseous Detonation Waves, in: Ninth Symposium (Internat.) on Combustion, Academic Press, Inc., New York, 1963, pp. 282–286.

    Chapter  Google Scholar 

  15. D. L. Ward, D. G. Pearce, and D. J. Merrett, Liquid Hydrogen Explosions in Closed Vessels, in: K. D. Timmerhaus (ed.), Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York, 1964, pp. 390–400.

    Google Scholar 

  16. Michael G. Zabetakis, Fire and Explosion Hazards at Temperature and Pressure Extremes, in: Chemical Engineering Under Extreme Conditions, Inst, of Chem. Eng., London, 1965, pp. 87–93.

    Google Scholar 

  17. Wilhelm Jost, Explosion and Combustion Processes in Gases, McGraw-Hill Book Co., New York, 1946, 621 pp.

    Google Scholar 

  18. Michael G. Zabetakis, Aldo L. Furno, and Henry E. Perlée, Hazards in Using Liquid Hydrogen in Bubble Chambers, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 6309, Pittsburgh, 1963, 39 pp.

    Google Scholar 

  19. P. A. Cubbage and W. A. Simmonds, An Investigation of Explosion Reliefs for Industrial Drying Ovens, Gas Council, Res. Communication GC 23 (London), 1955, 46 pp.

    Google Scholar 

  20. P. A. Cubbage and W. A. Simmonds, An Investigation of Explosion Reliefs for Industrial Drying Ovens, Gas Council, Res. Communication GC 43 (London), 1957, 41 pp.

    Google Scholar 

  21. W. A. Simmonds and P. A. Cubbage, The Design of Explosion Reliefs for Industrial Drying Ovens, Proc. Symp. on Chem. Process Hazards, Inst. Chem. Eng., London, 1960, p. 69.

    Google Scholar 

  22. Joseph Conison, How to Design a Pressure Relief System, Chem. Eng., 67:109–114 (1960).

    Google Scholar 

  23. R. L. Porter, Unusual Pressure Relief Devices, Ind. and Eng. Chem., 54:24–27 (1962).

    Article  Google Scholar 

  24. N. A. Weil, Rupture Characteristics of Safety Diaphragms, J. Appl. Phys., 30:621–624 (1959).

    Google Scholar 

  25. M. G. Zabetakis and J. K. Richmond, The Determination and Graphic Representation of the Limits of Flammability of Complex Hydrocarbon Fuels at Low Temperatures and Pressures, in: Fourth Symposium (Internat.) on Combustion, Williams & Wilkins Co., Baltimore, 1953, pp. 121–126.

    Google Scholar 

  26. A. G. White, Limits for the Propagation of Flame in Inflammable Gas-Air Mixtures, III. The Effect of Temperature on the Limits, J. Chem. Soc. (London), 127:672–684 (1925).

    Article  Google Scholar 

  27. M. G. Zabetakis, S. Lambiris, and G. S. Scott, Flame Temperatures of Limit Mixtures, in: Seventh Symposium (Internat.) on Combustion, Butterworths Scientific Publications (London), 1959, pp. 484–487.

    Google Scholar 

  28. David Burgess and Michael G. Zabetakis, Fire and Explosion Hazards Associated with Liquefied Natural Gas, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 6099, Pittsburgh, Pa., 1962, 34 pp.

    Google Scholar 

  29. W. R. Rolingson, John MacPherson, P. D. Montgomery, and B. L. Williams, Effect of Temperature on the Upper Flammable Limit of Methane, Ammonia, and Air Mixtures, J. Chem. Eng. Data, 5:349–351 (1960).

    Article  Google Scholar 

  30. N. E. Hanna, M. G. Zabetakis, R. W. Van Dolah, and G. H. Damon, Potential Ignition Hazards Associated With Compressed-Air Blasting Using a Compressor Underground, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 5223, Pittsburgh, 1956, 33 pp.

    Google Scholar 

  31. G. W. Jones, R. E. Kennedy, and I. Spolan, Effect of High Pressures on the Flamma-bility of Natural Gas-Air-Nitrogen Mixtures, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 4557, Pittsburgh, Pa., 1949, 16 pp.

    Google Scholar 

  32. J. H. Burgoyne and G. Williams-Leir, The Influence of Incombustible Vapours on the Limits of Inflammability of Gases and Vapours in Air, Proc. Roy. Soc. (London), 193:525–539, 1948.

    Article  Google Scholar 

  33. Howard W. Hill, Methyl Bromide-Air Explosion, Chem. Eng. Prog., 58:46–49 (August 1962).

    Google Scholar 

  34. G. J. Gibbs, and H. F. Calcote, Effect of Molecular Structure on Burning Velocity. J. Chem. Eng. Data, 5:226–237 (1959).

    Article  Google Scholar 

  35. J. M. Singer, Joseph Grumer, and E. B. Cook, Burning Velocities by the Bunsen-Burner Method. I. Hydrocarbon-Oxygen Mixtures at One Atmosphere. II. Hydrocarbon-Air Mixtures at Subatmospheric Pressures, Proc. Aerothermochem. Gas Dynamics Symposium, Northwestern Univ., Evanston, Ill., 1955, pp. 139–150.

    Google Scholar 

  36. Gordon L. Dugger and Sheldon Heimel, Flame Speeds of M ethane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures, Nat. Advisory Committee for Aeronautics TN 2624, Washington, D.C., February 1952, 25 pp.

    Google Scholar 

  37. J. T. Agnew, and L. B. Graiff, The Pressure Dependence of Laminar Burning Velocity by the Spherical Bomb Method, Combustion and Flame, 5:209–219 (1961).

    Article  Google Scholar 

  38. R. W. Smith, Jr., H. E. Edwards, and Stuart R. Brinkley, Jr., The Thermodynamics of Combustion Gases: Temperatures of Methane-Air and Propane-Air Flames at Atmospheric Pressure, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 4938, Pittsburgh, 1953, 3 pp.

    Google Scholar 

  39. H. F. Coward and G. W. Jones, Limits ofFlammability of Gases and Vapors, Bureau of Mines Bulletin 503, U.S. Government Printing Office, Washington, D.C., 1952, 155 pp.

    Google Scholar 

  40. Michael G. Zabetakis, Research on the Combustion and Explosion Hazards of Hydrogen-Water Vapor-Air Mixtures, AECU-3327, Office of Technical Services, Washington, D.C., 1956, 11 pp.

    Google Scholar 

  41. Sheldon Heimel, Effect of Initial Mixture Temperature on Burning Velocity of Hydrogen-Air Mixtures With Preheating and Simulated Preburning, NACA TN 4156, National Aeronautics and Space Administration, Washington, D.C., 1957, 23 pp.

    Google Scholar 

  42. Isadore L. Drell and Frank E. Belles, Survey of Hydrogen Combustion Properties, NACA Report 1383, U.S. Government Printing Office, Washington, D.C., 1958, 34 pp.

    Google Scholar 

  43. George S. Scott, Robert E. Kennedy, Irving Spolan, and Michael G. Zabetakis, Flammability Characteristics of Ethylene, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 6659, Pittsburgh, 1965, 10 pp.

    Google Scholar 

  44. Frederick D. Rossini et al., Selected Values of Properties of Hydrocarbons, National Bureau of Standards Circular C461, U.S. Government Printing Office, Washington, D.C., 1947, pp. 157, 163.

    Google Scholar 

  45. A. G. Streng and A. V. Grosse, The Ozone to Oxygen Flame, in: Sixth Symposium (Internat.) on Combustion, Reinhold Publishing Corp., New York, 1957, pp. 264–273.

    Google Scholar 

  46. Ia. B. Zeldovich and A. S. Kompaneets, Theory of Detonation, Academic Press, Inc., New York, 1960, p. 84.

    Google Scholar 

  47. R. G. Stoner and W. Bleakney, The Attenuation of Spherical Shock Waves in Air, J. Appl. Phys., 19:670–678 (1948).

    Article  Google Scholar 

  48. Loren E. Bollinger and Rudolph Edse, Thermodynamic Calculations of Hydrogen-Oxygen Detonation Parameters for Various Initial Pressures, ARS Journal, February 1961, pp. 251–256.

    Google Scholar 

  49. Robert G. Dunn and Bernard T. Wolfson, Single Generalized Chart of Detonation Parameters for Gaseous Mixtures, J. Chem. Eng. Data, 4:124–127 (1959).

    Article  Google Scholar 

  50. Bernard T. Wolfson and Robert G. Dunn, Generalized Charts of Detonation Parameters for Gaseous Mixtures, J. Chem. Eng. Data, 1:77–82 (1956).

    Article  Google Scholar 

  51. F. I. Metz, Liquid OF2-Silica Mixture Explodes, Chem. and Eng. News, 43:41, (February 15, 1965).

    Google Scholar 

  52. W. E. Tournay, F. M. Bower, and F. W. Brown, Safety and Performance Characteristics of Liquid-Oxygen Explosives, Bureau of Mines Bulletin 572, U.S. Government Printing Office, Washington D.C., 1949, 88 pp.

    Google Scholar 

  53. R. L. Häuser and W. F. Rumpel, Reactions of Organic Materials With Liquid Oxygen, in: K. D. Timmerhaus, (ed.), Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York, 1963, pp. 242–250.

    Google Scholar 

  54. E. Kehat, Hazard Level of Hydrocarbon Films in Systems Containing Liquid and Gaseous Oxygen, in: K. D. Timmerhaus, (ed.), Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York, 1962, pp. 163–169.

    Google Scholar 

  55. Hans A. Bethe, Klaus Fuchs, Joseph O. Hirschfelder, John L. Magee, Rudolph E. Peierls, and John von Neumann, Blast Waves, Los Alamos Scientific Laboratory Report LA-2000, Office of Technical Services, Washington, D.C., 1958, 301 pp.

    Google Scholar 

  56. U.S. Atomic Energy Commission, The Effects of Nuclear Weapons, Samuel Glasstone, ed., U.S. Government Printing Office, Washington, D.C, 1962, pp. 102–195.

    Google Scholar 

  57. Gilbert Ford Kinney, Explosive Shocks in Air, The Macmillan Co., New York, 1962, pp. 1–19; 75–87; 131–161.

    Google Scholar 

  58. Harold L. Brode, Numerical Solutions of Spherical Blast Waves, J. Appl. Phys., 26:766–775(1955).

    Article  Google Scholar 

  59. R. G. Sachs, The Dependence of Blast on Ambient Pressure and Temperature, BRL Report No. 466, Ballistics Research Laboratory, Aberdeen, Md., 1944, 8 pp.

    Google Scholar 

  60. J. M. Dewey, The Air Velocity in Blast Waves From TNT Explosives, Proc. Roy. Soc. (London), A279:366–385 (1964).

    Article  Google Scholar 

  61. C. Kingery and B. Pannill, Peak Over-Pressure vs. Scaled Distance for TNT Surface Burst (Hemispherical Charges), BRL Memorandum Report 1518, Ballistic Research Laboratory, Aberdeen, Md., 1964, 22 pp.

    Google Scholar 

  62. M. A. Cook, Explosion Hazards in Propellants, in: Robert W. Vance (ed.), Cryogenic Technology, John Wiley and Sons, Inc., New York, 1963, pp. 375–423.

    Google Scholar 

  63. United States Civil Defense, Windowless Structures. A Study in Blast-Resistant Design, Federal Civil Defense Administration, Washington, D.C, TM-5–4, 1952, pp. 1–161.

    Google Scholar 

  64. Clayton S. White, Biological Blast Effects, United States Atomic Energy Commission, Technical Information Service, TID-5564, Washington, D.C, 1959, pp. 1–50.

    Book  Google Scholar 

  65. Donald R. Richmond and Clayton S. White, A Tentative Estimation of Man’s Tolerance to Overpressure from Air Blast, Defense Atomic Support Agency Report No. 1335, Washington, DC, 1962, pp. 1–34.

    Book  Google Scholar 

  66. V. L. Blinov and G. H. Khudiakov, Certain Laws Governing Diffusive Burning of Liquids, Doklady, Akademia Nauk SSSR, 113:1094–1098 (1957).

    Google Scholar 

  67. H. C. Hottel, review of “Certain Laws Governing Diffusive Burning of Liquids” by V. L. Blinov and G. H. Khudiakov, Fire Research Abstracts and Reviews, 1:41–44 (1958).

    Google Scholar 

  68. D. S. Burgess, A. Strasser, and J. Grumer, Diffusive Burning of Liquid Fuels in Open Trays, Fire Research Abstracts and Reviews, 3:177–192 (1961).

    Google Scholar 

  69. M. G. Zabetakis and D. S. Burgess, Research on the Hazards Associated With the Production and Handling of Liquid Hydrogen, Bureau of Mines, U.S. Department of the Interior, Report of Investigations 5707, Pittsburgh, 1961, 50 pp.

    Google Scholar 

  70. Roy Reider, Harry J. Otway, and Herbert T. Knight, An Unconfined, Large-Volume Hydrogen/Air Explosion, Pyrodynamics, 2:249–261 (1965).

    Google Scholar 

  71. J. B. Gayle and J. W. Bransford, Size and Duration of Fireballs from Propellant Explosions, NASA Technical Memorandum X-53314, NASA, Huntsville, Ala., 1965, pp. 4–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zabetakis, M.G. (1967). Chemical Hazards. In: Safety with Cryogenic Fluids. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5684-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5684-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5686-6

  • Online ISBN: 978-1-4899-5684-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics