Skip to main content
  • 102 Accesses

Abstract

A complex valued function defined and analytic in the entire complex plane is called an entire function or an integral function. In other words, in the extended complex plane, it can have a singularity only at infinity. If f is an entire function different from a polynomial and M(r, f) [or M(r) when there is no confusion] denotes the maximum of |f(z)| on the circle |z| = r, it follows from Liou-ville’s theorem that M(r, f) increases more rapidly than any power of r. Thus, to study the growth of the function we have to compare with exponentials.

This contains the proofs of the results announced by the author in Refs. 22 and 23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Achiezer, A. M. S. Translations, Ser. 2, 22: 95–137 (1962).

    Google Scholar 

  2. R. P. Boas Jr., “Entire Functions,” Academic Press, New York, 1954.

    MATH  Google Scholar 

  3. R. P. Boas, Jr., Ann. of Math. (2) 39:269–289 (1938).

    Article  MathSciNet  Google Scholar 

  4. R. P. Boas Jr., “Harmonic Analysis and Entire Functions,” Symposium on Harmonic Analysis and Related Integral Transforms, Vol. I, Cornell University, 1956.

    Google Scholar 

  5. R. P. Boas and H. Pollard. Ann. of Math. 48 (2): 366–383 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  6. L. de Branges., Proc. Amer. Math. Soc. 10:825–832 (1959).

    MathSciNet  MATH  Google Scholar 

  7. J. L. Griffith, Proc. and Jour, of Roy. Soc. of New South Wales, 84: 109–115.

    Google Scholar 

  8. I. O. Hacatrjan, Soviet Math. 3:1106–1110 (1962).

    Google Scholar 

  9. Harby, Littlewood, and Polya, “Inequalities,” Cambridge, 1934.

    Google Scholar 

  10. A. R. Harvey, Amer. J. of Math. 70:181–201 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. I. Ibragimov, “Extremal Properties of Entire Functions of Finite Order,” State Publishing House, Acad, of Sci., Azerbaijan USSR, Baku, 1962 (Russian).

    Google Scholar 

  12. J. Korevaar, Nieuw. Arch. Wiskunde 23 (2): 55–72 (1949).

    MathSciNet  MATH  Google Scholar 

  13. J. Korevaar, “Fourier Transforms of Generalized Functions” Symposium on Harmonic Analysis and Related Integral Transforms, Vol. 2, Cornell University, 1956.

    Google Scholar 

  14. J. Korevaar, “Limits of Polynomials with Restricted Zeros” Essays in Honour of George Polya. Stanford University, 1962.

    Google Scholar 

  15. B. Ja. Levin, “Distribution of Zeros of Entire Functions,” Translations of Mathematical Monographs, Vol. 5, A. M. S., Providence, R. I.

    Google Scholar 

  16. S. N. Mergelyan, “Weighted Approximation by Polynomials,” A. M. S. Translations ser. 2. Vol. 10, 1958.

    Google Scholar 

  17. M. Plancherel and G. Polya, Comment. Math. Helv. 9: 110–163,(1938).

    MathSciNet  Google Scholar 

  18. G. Polya and G. Szego, Bull. Amer. Math. Soc. 51: 520 (1945) Abstract 119.

    Google Scholar 

  19. G. Polya and G. Szego, “Aufgaben und Lehrsätze aus der Analysis 1–11,” Berlin. 1925.

    Google Scholar 

  20. E. C. Titchmarsh, “Introduction to the Theory of Fourier Integrals, “Oxford University Press, 1948.

    Google Scholar 

  21. E. C. Titchmarsh, J. of Lond. Math. Soc. 1: 195–196. (1926).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. R. Unni. Bull. Amer. Math. Soc. 71 (3): 511–513 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  23. K. R. Unni, Bull. Amer. Math. Soc. 71 (3): 514–516 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Wahde, Math. Scand. 15:131–141 (1964).

    MathSciNet  MATH  Google Scholar 

  25. G. N. Watson, “Bessel Functions,” Cambridge, 1922.

    MATH  Google Scholar 

  26. G. M. Wing, Amer. J. of Math. 72:792–807 (1950).

    Article  MathSciNet  Google Scholar 

  27. G. M. Wing, Pacific Jour. of Math. 1:313–319 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Zygmund, “Trigonometrical Series,” Dover, 1955.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alladi Ramakrishnan (Director of the Institute)

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Unni, K.R. (1968). Functions of Exponential Type. In: Ramakrishnan, A. (eds) Symposia on Theoretical Physics and Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5424-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5424-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5426-8

  • Online ISBN: 978-1-4899-5424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics