Skip to main content

On Locally Isomorphic Groups and Cartan-Stiefel Diagrams

  • Chapter
Symposia on Theoretical Physics and Mathematics
  • 101 Accesses

Abstract

The groups considered in this review article are the semi-simple compact and connected Lie groups. Given such a group, all the (semisimple compact connected Lie) groups which are locally isomorphic to it are determined. The relations which hold among the members of such a set of groups—called a family—are given, i.e., the relations between a group, its covering groups, and its universal covering group are established.1,2 For the semisimple compact connected Lie groups, diagrams can be derived—the so called Cartan-Stiefel diagrams. The connections between these diagrams and the results stated for the families of locally isomorphic groups will be established in the second part of this article.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. S. Pontrjagin, “Topologische Gruppen,” Vol. 1, Teubner, Leipzig, 1957.

    MATH  Google Scholar 

  2. L. S. Pontrjagin, “Topologische Gruppen,” Vol. 2, Teubner, Leipzig, 1958.

    MATH  Google Scholar 

  3. E. Stiefel, Comm. Math. Helv. 14: 350–380, (1942).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Gruber, “On Topological Groups and Global Methods,” Matscience Report.

    Google Scholar 

  5. P. M. Cohn, “Lie Groups,” p. 94 and 139, Cambridge University Press, 1965.

    Google Scholar 

  6. C. Chevalley, “Theory of Lie Groups,” p. 37, Princeton University Press, 1946.

    MATH  Google Scholar 

  7. Pontrjagin, op. cit., vol. 1, p. 152.

    Google Scholar 

  8. H. Boerner, “Representations of Groups,” p. 39 and 196, North Holland, 1963.

    MATH  Google Scholar 

  9. Boerner, op. cit., p. 191 ; Chevally, op. cit., p. 37.

    MATH  Google Scholar 

  10. Cohn, op. cit., p. 142. Theorem 7.1.1; Pontrjagin, op. cit., Vol. 2, p. 126.

    Google Scholar 

  11. Pontrjagin. op. cit., vol. 1, p. 111.

    Google Scholar 

  12. Boerner, op. cit., Ch. VII, § 1.

    MATH  Google Scholar 

  13. D. Speiser, “Group Theoretical Concepts and Methods in Elementary Particle Physics,” Gorden and Breach Science Publishers, Inc., New York, 1962.

    Google Scholar 

  14. Pontrjagin, op. cit., vol. 1, p. 72.

    Google Scholar 

  15. Boernor, op. cit., p. 197; Cohn, op. cit., p. 47, examples 1 and 2.

    Google Scholar 

  16. Pontrjagin, op. cit., vol. 2, p. 124.

    Google Scholar 

  17. Cohn, op. cit., p. 140.

    Google Scholar 

  18. Pontrjagin, op. cit., vol. 2, p. 126, D.

    Google Scholar 

  19. Chevalley, op. cit., p. 2 and Ref. (9).

    Google Scholar 

  20. Pontrjagin, op. cit., vol. 2, p. 125.

    Google Scholar 

  21. Cohn, op. cit., Ch. VII, § 7.2.

    Google Scholar 

  22. Boerner, op. cit., Ch. VII, 1.

    Google Scholar 

  23. Pontrjagin, op. cit., vol. 1, p. 112, D, E.

    Google Scholar 

  24. Pontrjagin, op. cit., vol. 2, § 49.

    Google Scholar 

  25. Pontrjagin, op. cit., vol. 2, p. 124; Cohn, op. cit., p. 141.

    Google Scholar 

  26. Pontrjagin, op. cit., vol. 2, § 49, G.

    Google Scholar 

  27. Pontrjagin, op. cit., vol. 2, p. 130.

    Google Scholar 

  28. Pontrjagin, op. cit., vol. 2, § 50, def. 45.

    Google Scholar 

  29. Pontrjagin, op. cit., vol. 1, § 19, C.

    Google Scholar 

  30. Pontrjagin, op. cit., vol. 1, § 19, def. 24.

    Google Scholar 

  31. Pontrjagin, op. cit., vol. 2, § 50, D.

    Google Scholar 

  32. Pontrjagin, op. cit., vol. 2, § 49, D.

    Google Scholar 

  33. Pontrjagin, op. cit., vol. 2, § 45.

    Google Scholar 

  34. L. S. Pontrjagin, “Topological Groups,” p. 221 and 225, Princeton University Press, 1958.

    Google Scholar 

  35. Pontrjagin, op. cit., vol. 2, § 51.

    Google Scholar 

  36. Pontrjagin, op. cit., vol. 2, p 143.

    Google Scholar 

  37. Pontrjagin, op. cit., vol. 1, § 23.

    Google Scholar 

  38. Pontrjagin, op. cit., vol. 1, § 23, C.

    Google Scholar 

  39. Pontrjagin, op. cit., vol. 1, p. 153, Satz 18.

    Google Scholar 

  40. Pontrjagin, op. cit., vol. 2, § 51, p. 149.

    Google Scholar 

  41. Pontrjagin, op. cit., vol. 1, § 22, p. 149.

    Google Scholar 

  42. Pontrjagin, op. cit., vol. 2, p. 138, E.

    Google Scholar 

  43. Pontrjagin, op. cit., vol. 2, p. 153, Example 91; p. 287, F and Example 108.

    Google Scholar 

  44. L. O’Raifeartaigh, “On Local Lie Groups and Their Representations,” Matscience Report.

    Google Scholar 

  45. G. Racah, “Group Theory and Spectroscopy,” Ergeb. Exakt. Naturw., 37, Springer.

    Google Scholar 

  46. Stiefel, op. cit.; Boerner, op. cit., Ch. VII, §2.

    Google Scholar 

  47. H. Hopf, Comm. Math. Helv. 13:119–143 (1941).

    Article  Google Scholar 

  48. O’Raifeartaigh, op. cit., p. 94.

    Google Scholar 

  49. Racah, op. cit., lecture 2.

    Google Scholar 

  50. Pontrjagin, op. cit., vol. 2, p. 241.

    MathSciNet  Google Scholar 

  51. Cohn, op. cit., p. 8, Example 2.

    Google Scholar 

  52. Boerner, op. cit., p. 82; O’Raifeartaigh, op. cit., p. 61 and p. 84; Cohn, op. cit., p. 135.

    Google Scholar 

  53. O’Raifeartaigh, op. cit; Cohn, op. cit., p. 109.

    Google Scholar 

  54. Pontrjagin, op. cit., vol. 1, p. 20 and 129.

    MathSciNet  Google Scholar 

  55. Stiefel, op. cit., p. 358.

    MathSciNet  Google Scholar 

  56. Boerner, op. cit., p. 82; Cohn, op. cit., p. 135.

    Google Scholar 

  57. Boerner, op. cit., p. 198.

    Google Scholar 

  58. Stiefel, op. cit., p. 356.

    MathSciNet  Google Scholar 

  59. Stiefel, op. cit., p. 359; Boerner, op. cit., p. 209.

    MathSciNet  Google Scholar 

  60. Pontrjagin, “Topological Groups,” op. cit., p. 55, C.

    Google Scholar 

  61. Pontrjagin, op. cit., vol. 2, § 62–64.

    Google Scholar 

  62. Pontrjagin, op. cit., vol. 2, p. 175; Stiefel, op. cit., p. 373.

    Google Scholar 

  63. Stiefel, op. cit., § 1 and p. 370.

    Google Scholar 

  64. Boerner, op. cit., p. 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alladi Ramakrishnan (Director of the Institute)

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruber, B. (1968). On Locally Isomorphic Groups and Cartan-Stiefel Diagrams. In: Ramakrishnan, A. (eds) Symposia on Theoretical Physics and Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5424-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5424-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5426-8

  • Online ISBN: 978-1-4899-5424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics