Skip to main content
Book cover

Cryocoolers pp 265–295Cite as

Joule-Thomson Cooling Systems

  • Chapter

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

Abstract

In a Joule-Thomson cryocooler gas expands from high pressure to low pressure at constant enthalpy (often called a throttled or Joule-Thomson expansion) and thereby experiences a decrease in temperature. The system is widely used for gas liquefaction. It may be a simple Linde-Hampson cryocooler or associated with more complex systems involving closed cycle expansion engines to precool the gas before throttled expansion occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baehr, H. D. (1963). “On the Thermodynamics of the Cold-Air Cycle with Throttling.” Proc. XI Int. Congr. of Ref./Prog, in Ref. Sci. Technol. 1, 319–328, Munich, Germany (Pubs. Pergamon Press, Oxford and Vertag Muller, Karlsruhe).

    Google Scholar 

  • Barron, R. (1966). Cryogenic Systems. McGraw-Hill Book Co., Toronto.

    Google Scholar 

  • Buller, J. S. (1971). “A Miniature Self-Regulating Rapid-Cooling Joule-Thompson Cryostat.“ Adv. Cryog. Eng. 16, 205–213.

    Article  Google Scholar 

  • Carbonnell, E., Chovet, P., Johannes, C, Marinet, D., and Solente, P. (1972). “Refrigerator without Moving Parts at Low Temperature Able to Cool Down to 90–100 K.” Proc. 4th Int. Cryo. Eng. Conf., Eindhoven, pp. 68–70.

    Google Scholar 

  • Currie, R. B. (1967). “A Joule-Thomson Laboratory Expander.” Adv. Cryo. Eng. 12, 557–563.

    Google Scholar 

  • Daunt, J. G. (1956). The Production of Low Temperatures down to Hydrogen Temperatures. Handbuch der Physik Bd IV, Springer Verlag, Berlin.

    Google Scholar 

  • Geist, J. M., and Lashmet, P. K. (1960). “Miniature Joule-Thomson Refrigeration Systems.“ Adv. Cryog. Eng. 5.

    Google Scholar 

  • Geist, J. M., and Lashmet, P. K. (1961). “Compact Joule-Thomson Refrigeration Systems 15–60 K.” Adv. Cryog. Eng. 6.

    Google Scholar 

  • Haarhuis, G. J. (1967). New Type Helium Liquefier.” Proc. XII Int. Cong, of Ref./Prog., in Ref. Sci. Technol. 1, 121, Madrid (11R Paris).

    Google Scholar 

  • Haisma, J., and Roozendaal, K. (1967). “Investigation of the Behaviour of an Expansion-Ejector in the Low Temperature Region beyond the λ-Transition of Helium.” Proc. XII Int. Cong, of Ref./Prog., in Ref. Sci. Technol. 1, 111–210, Madrid (11R Paris).

    Google Scholar 

  • Hampson, W. (1895). British Patent 10165.

    Google Scholar 

  • Joule, J. P. (1852). Sci. Pap. 2, p. 216.

    Google Scholar 

  • Joule, J. P., and Thomson, W. (1852). Phil. Mag. 4, 481.

    Google Scholar 

  • Keesom, W. H. (1933). Commun. Phys. Lab. Univ. Leiden, suppl. 76a.

    Google Scholar 

  • Kessler, G. (1970). “Joule-Thomson Hydrogen Refrigerator Target.” Adv. Cryog. Eng. 15, 443–446.

    Google Scholar 

  • Linde, H. V. (1897). German Patent 88824 [see also Z. ges Kälteind 4, 23 (1897); and the Engineer, Nov. 13 and 20 (1896)].

    Google Scholar 

  • Mann, D. B., Bjorkland, W. R., Macinko, J., and Hiza, M. J. (1960). “Design, Construction and Performance of a Laboratory Size Helium Liquefier.” Adv. Cryog. Eng. 5, 346–353.

    Google Scholar 

  • McInroy, J. (1967). Miniature Joule-Thomson Coolers.” Proc. XII Int. Cong, of Ref./Prog. in Ref. Sci. Technol. 1, 59–68, Madrid (11R, Paris).

    Google Scholar 

  • Nicholds, K. E. (1968). “Low Temperature Devices for Laboratory Operation.” Proc. 2nd Int. Cryo. Eng. Conf., pp. 65–66, Brighton Iliffe, Sci. and Tech. Publ., Guildford, U.K.

    Google Scholar 

  • Nicholds, K. E. (1970). (a) “Performance of Self-Regulating Joule-Thomson Minicoolers,” pp. 277-282. (b) “Miniature Cryogenic Cooling Systems for an Upper Atmosphere Infrared Research Programme,” pp. 283-286, Proc. 3rd Int. Cryog. Eng. Conf., Berlin, Iliffe Sci. and Tech. Publ., Guildford, U.K.

    Google Scholar 

  • Parkinson, D. H. (1959). “Some Problems in the Design of Helium Liquefiers Based on the Joule-Thomson Effect.” Proc. X Int. Cong, of Ref./Prog. in Ref. Sci. Technol. 1, 53–57 (Publ. Pergamon Press, Oxford).

    Google Scholar 

  • Parkinson, D. H. (1967). “Miniature Refrigeration Systems—A Review.” Proc. XII Int. Cong. of Ref./Prog. in Ref. Sci. and Tech., Vol. 1, 69–77, Madrid (11R, Paris).

    Google Scholar 

  • Prast, G. (1968). “A 3.5 K Refrigerator Based on the Three-Space Stirling Refrigerator.” Proc. 2nd Int. Cryo. Eng. Conf., Brighton, Iliffe Sci. and Tech. Pubs. Ltd., Guildford, U.K.

    Google Scholar 

  • Rietdijk, J. A. (1966). “The Expansion-Ejector—A New Device for Liquefaction and Refrigeration at 4 K and Lower.” Included in Liquid Helium Technology, Bull. IIR, Annexe 1966-65, p. 241.

    Google Scholar 

  • Stephens, S. (1970). “A Self-Regulating Miniature Joule-Thomson Refrigerator.” Appl. Cryog. Technol. 3.

    Google Scholar 

  • Stuart, R. W., and Hogan, W. H. (1965). “A Small Helium Liquefier.” Adv. Cryog. Eng. 10, 62–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, G. (1983). Joule-Thomson Cooling Systems. In: Cryocoolers. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5286-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5286-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5288-2

  • Online ISBN: 978-1-4899-5286-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics