Skip to main content

Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: sun sensitivity, DNA repair defects and skin cancer

  • Chapter
Genetic Predisposition to Cancer

Abstract

Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease [1] with a combination of clinical, cellular and molecular features which initially generated an intellectually satisfying and simple association between defects in DNA repair, increased mutability and cancer proneness. As the study of XP patients has proceeded, however, interesting anomalies and unanticipated complexities have been uncovered. In particular, as a consequence of using XP as a model, two other, extremely rare but not cancer-prone, autosomal recessive diseases, Cockayne syndrome (CS) and trichothiodystrophy (TTD) [2] have extended the apparent relationship of DNA repair defects to a wide spectrum of associated clinical features. The relationship between the three conditions is complex — there are a few individuals with the features of both XP and CS, and mutations in one of the XP genes can give rise to individuals with XP alone, XP with CS, or TTD alone. In order to understand the relationship between DNA damage/repair and cancer revealed in XP, it is necessary to study all three conditions at the clinical, cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kraemer, K. H. and Slor, H. (1984) Xeroderma pigmentosum. Clin. Dermatol., 2, 33–69.

    Google Scholar 

  2. Lehmann, A. R. (1987) Cockayne’s syndrome and trichothiodystrophy: defective repair without cancer. Cancer Rev., 7, 82–103.

    Google Scholar 

  3. Ramsay, C. A. and Giannelli, F. (1975) The erythemal action spectrum and deoxyribonucleic acid repair synthesis in xeroderma pigmentosum. Br. J. Dermatol., 92, 49–56.

    Article  PubMed  CAS  Google Scholar 

  4. Kraemer, K. H., Lee, M. M. and Scotto, J. (1987) Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch. Dermatol., 123, 241–50.

    Article  PubMed  CAS  Google Scholar 

  5. Kraemer, K. H., Lee, M. M. and Scotto, K. (1984) DNA repair protects against cutaneous and internal neoplasia: Evidence from xeroderma pigmentosum. Carcinogenesis, 5, 511–14.

    Article  PubMed  CAS  Google Scholar 

  6. Noms, P. G., Limb, G. A., Hamblin, A. S. et al. (1990) Immune function, mutant frequency and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne’s syndrome and trichothiodystrophy. J. Invest. Dermatol., 94, 94–100.

    Article  Google Scholar 

  7. Gaspari, A. A., Fleisher, T. A. and Kraemer, K. H. (1993) Impaired interferon production and natural killer cell activation in patients with the skin cancer prone disorder, xeroderma pigmentosum. J. Clin. Invest., 92, 1135–42.

    Article  PubMed  CAS  Google Scholar 

  8. Anstey, A., Arlett, C. F., Cole, J. et al. (1991) Long term survival and preservation of natural killer cell activity in a xeroderma pigmentosum patient with spontaneous regression and multiple deposits of malignant melanoma. Br. J. Dermatol., 125, 272–8.

    Article  PubMed  CAS  Google Scholar 

  9. Turner, M.L., Moshell, A., Corbett, D.W. et al. (1993) Clearing of melanoma-in-situ with intralesional α-interferon in a patient with xeroderma pigmentosum. J. Invest. Dermatol., 100, 538.

    Google Scholar 

  10. Krutmann, J., Bohnert, E. and Jung, E.G. (1994) Evidence that DNA damage is a mediate in ultraviolet B radiation — Induced inhibition of human gene expression: Ultraviolet B radiation effects on intercellular adhesion molecule-1 (ICAM-1) expression. J. Invest. Dermatol., 102, 428–32.

    Article  PubMed  CAS  Google Scholar 

  11. Nance, M.A. and Berry, S.A. (1992) Cockayne syndrome: review of 140 cases. Am. J. Med. Genet., 42, 68–84.

    Article  PubMed  CAS  Google Scholar 

  12. Lehmann, A.R., Thompson, A.F., Harcourt, S.A., Stefanini, M. and Norris, P.G. (1993) Cockayne’s syndrome; correlation of clinical features with cellular sensitivity of RNA synthesis to UV-irradiation. J. Med. Genet., 30, 679–82.

    Article  PubMed  CAS  Google Scholar 

  13. Itin, P.H. and Pittelkow, M.R. (1990) Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. J. Am. Acad. Dermatol, 20, 705–17.

    Article  Google Scholar 

  14. Gartler, S.M. (1964) Inborn errors of metabolism at the cell culture level, in Second International Conference on Congenital Malformations, (ed. M. Fishbein), International Medical Congress, New York, p. 94.

    Google Scholar 

  15. Cleaver, J.E. (1968) Deficiency in repair replication of DNA in xeroderma pigmentosum. Nature, 218, 652–6.

    Article  PubMed  CAS  Google Scholar 

  16. Cleaver, J.E. (1972) Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to uv light. J. Invest. Dermatol, 58, 124–8.

    Article  PubMed  CAS  Google Scholar 

  17. Lehmann, A.R., Kirk-Bell, S., Arlett, C.F. et al. (1975) Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl Acad. Sci. USA, 72, 219–23.

    Article  PubMed  CAS  Google Scholar 

  18. Maher, V.M., McCormick, J.J., Grover, P. and Sims, P. (1977) Effect of DNA on the cytotoxicity and mutagenicity of polycyclic hydrocarbon derivatives in normal and xeroderma pigmentosum human fibroblasts. Mutat. Res., 43, 117–38.

    Article  PubMed  CAS  Google Scholar 

  19. Arlett, C.F., Lowe, J.E., Harcourt, S.A. et al. (1993) Hypersensitivity of human lymphocytes to UV-B and solar irradiation. Cancer Res., 53, 609–14.

    PubMed  CAS  Google Scholar 

  20. Hoeijmakers, J.H.J. (1993) Nucleotide excision repair II: from yeast to mammals. Trends Genet., 9, 211–17.

    Article  PubMed  CAS  Google Scholar 

  21. Jaspers, N.G.J., Jansen-van De Kuilen, G. and Bootsma, D. (1981) Complementation analysis of xeroderma pigmentosum variants. Exp. Cell Res., 136, 81–90.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka, K., Sekiguchi, M. and Okada, Y. (1975) Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc. Natl Acad. Sci. USA, 72, 4071–5.

    Article  PubMed  CAS  Google Scholar 

  23. De Jonge, A.J.R., Vermeulen, W., Klein, B. and Hoeijmakers, J.H.J. (1985) Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups. Mutai. Res., 150, 99–105.

    Article  Google Scholar 

  24. Green, M.H.L., Lowe, J.E., Harcourt, S.A. et al. (1992) UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the Comet Assay: a potential diagnostic technique. Mutat. Res., 273, 137–44.

    Article  PubMed  CAS  Google Scholar 

  25. Weeda, G. and Hoeijmakers J.H.J. (1993) Genetic analysis of nucleotide excision repair in mammalian cells. Semin. Cancer Biol., 4, 105–17.

    PubMed  CAS  Google Scholar 

  26. Venema, J., Van Hoffen, A., Karcagi, V., Natarajan, A.T., Van Zeeland, A.A. and Mullenders, L.H.F. (1991) Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell Biol., 11, 4128–34.

    PubMed  CAS  Google Scholar 

  27. Johnson R.T. and Squires S. (1992) The XP-D complementation group. Insight into xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. Mutat. Res., 273, 97–118.

    Article  PubMed  CAS  Google Scholar 

  28. Maher, V.M. and McCormick, J.J. (1976) Effect of DNA repair on the cytotoxicity and mutagenicity of UV irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells, in: Biology of Radiation Carcinogenesis, (eds J.M. Yuhas, R.W. Tennant and J.B. Regan), Raven Press, New York, pp. 129–45.

    Google Scholar 

  29. Arlett, CF. and Harcourt, S.A. (1983) Variation in response to mutagens amongst normal and repair-defective human cells, in Induced Mutagenesis. Molecular Mechanisms and their Implications for Environmental Protection, (ed. C.W. Lawrence), Plenum Press, New York, pp. 249–66.

    Google Scholar 

  30. Glover, T.W., Chang, C.-C, Trosko, J.F. and Li, S.S.-I. (1979) Ultraviolet light induction of diphtheria toxin-resistant mutants in normal and xeroderma pigmentosum human fibroblasts. Proc. Natl Acad. Sci. USA, 76, 3982–6.

    Article  PubMed  CAS  Google Scholar 

  31. De Weerd-Kastelein, E.A., Keijzer, W., Rainaldi, G. and Bootsma, D. (1977) Induction of sister chromatid exchanges in xeroderma pigmentosum cells after exposure to ultraviolet light. Mutat. Res., 45, 253–61.

    Article  PubMed  Google Scholar 

  32. Marshall, R.R. and Scott, D. (1976) The relationship between chromosome damage and cell killing in UV-irradiated normal and xeroderma pigmentosum cells. Mutat. Res., 36, 397–400.

    Article  PubMed  CAS  Google Scholar 

  33. Dorado, G., Steingrimsdottir, H., Arlett, C.F. and Lehmann, A.R. (1991) Molecular analysis of UV-induced mutations in a xeroderma pigmentosum cell line. J. Mol. Biol., 217, 217–22.

    Article  PubMed  CAS  Google Scholar 

  34. McGregor, W.G., Chen, R.-H., Lukash, L., Maher, V.M. and McCormick, J.J. (1991) Cell cycle-dependent strand bias for UV-induced mutations in the transcribed strand of excision repair-proficient human fibroblasts but not in repair deficient cells. Mol. Cell. Biol., 11, 1927–34.

    PubMed  CAS  Google Scholar 

  35. Bredberg, A., Kraemer, K.H. and Seidman, M.M. (1986) Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells. Proc. Natl Acad. Sci. USA, 83, 8273–7.

    Article  PubMed  CAS  Google Scholar 

  36. Cole, J., Arlett, CF., Norris, P.G. et al. (1992) Elevated hprt mutant frequency in circulating T-lymphocytes of xeroderma pigmentosum patients. Mutat. Res., 273, 171–8.

    Article  PubMed  CAS  Google Scholar 

  37. Steingrimsdottir, H., Rowley, G., Waugh, A. et al. (1993) Molecular analysis of mutations in the hprt gene in circulating lymphocytes from normal and DNA-repair-deficient donors. Mutat. Res., 294, 29–41.

    Article  PubMed  CAS  Google Scholar 

  38. Scott, R.J., Itin, P., Kleijer, W.J., Kolb, K., Arlett, C and Muller, H. (1993) Xeroderma pigmentosum-Cockayne syndrome complex in two, new patients: absence of skin tumors despite severe deficiency of DNA excision repair. J. Am. Acad. Dermatol., 29, 883–9.

    Article  PubMed  CAS  Google Scholar 

  39. Vermeulen, W., Scott, R.J., Potger, S. et al. (1994) Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am. J. Hum. Genet., 54, 191–200.

    PubMed  CAS  Google Scholar 

  40. Chang, H.R., Ishizaki, K., Sasaki, M.S. et al. (1989) Somatic mosaicism for DNA repair capacity in fibroblasts derived from a group A xeroderma pigmentosum patient. J. Invest. Dermatol., 93, 460–5.

    Article  PubMed  CAS  Google Scholar 

  41. Kraemer, K.H. (1980) Xeroderma pigmentosum, in Clinical Dermatology. Vol. 4, (eds D.J. Demis, R.L. Dobson and J. McGuire), Harper and Row, Hagerstown, pp. 1–33.

    Google Scholar 

  42. Robbins, J.H. (1988) Defective DNA repair in xeroderma pigmentosum and other neurologic diseases. Curr. Opin. Neurol. Neurosurg., 1, 1077–83.

    Google Scholar 

  43. Halley, D.J.J., Keijzer, W., Jaspers, N.G.J. et al. (1979) Prenatal diagnosis of xeroderma pigmentosum (group C) using assays of unscheduled DNA synthesis and postreplication repair. Clin. Genet., 16, 137–46.

    Article  PubMed  CAS  Google Scholar 

  44. Ramsay, C.A., Coltart, T.M., Blunt, S., Pawsey, S.A. and Giannelli, F. (1974) Prenatal diagnosis of xeroderma pigmentosum. Lancet, ii, 1109–12.

    Article  Google Scholar 

  45. Kraemer, K.H., DiGiovanna, J.J., Moshell, A.N., Tarone, R.E. and Peck, G.L. (1988) Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med., 318, 1633–7.

    Article  PubMed  CAS  Google Scholar 

  46. Strong, A. (1989) Xeroderma pigmentosum variant: prevention of cutaneous neoplasms with etretinate. Retinoids, 17, 40–2.

    Google Scholar 

  47. Berth-Jones, J., Cole, J., Lehmann, A.R., Arlett, C.F. and Graham-Brown, R.A.C. (1993) Xeroderma pigmentosum variant: 5 years of tumor suppression by etretinate. J.R. Soc. Med., 86, 355–6.

    PubMed  CAS  Google Scholar 

  48. Wade, M.H. and Chu, E.H.Y. (1979) Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome. Mutat. Res., 59, 49–60.

    Article  PubMed  CAS  Google Scholar 

  49. Marshall, R.R., Arlett, C.F., Harcourt, S.A. and Broughton, B.C. (1980) Increased sensitivity of cell strains from Cockayne’s syndrome to sister-chromatid-exchange induction and cell killing by UV light. Mutat. Res., 69, 107–12.

    Article  PubMed  CAS  Google Scholar 

  50. Mayne, L.V. and Lehmann, A.R. (1982) Failure of RNA synthesis to recover after UV-irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res., 42, 1473–8.

    PubMed  CAS  Google Scholar 

  51. Lehmann, A.R., Francis, A.J. and Giannelli, F. (1985) Prenatal diagnosis of Cockayne’s syndrome. Lancet, i, 486–8.

    Article  Google Scholar 

  52. Lehmann, A.R. (1982) Three complementation groups in Cockayne syndrome. Mutat. Res., 106, 347–56.

    Article  PubMed  CAS  Google Scholar 

  53. Venema, J., Mullenders, L.H.F., Natarajan, A.T., Van Zeeland, A.A. and Mayne, L.V. (1990) The genetic defect in Cockayne’s syndrome is associated with a defect in repair of uv-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA, 87, 4707–11.

    Article  PubMed  CAS  Google Scholar 

  54. Arlett, C.F. and Cole, J. (1989) Photosensitive human syndromes and cellular defects in DNA repair, in Ozone Depletion: Health and Environmental Consequences, (eds R. Russell Jones and T. Wigley), Wiley and Sons Ltd, Chichester, pp. 147–60.

    Google Scholar 

  55. Henderson, E.E. and Long, W.K. (1981) Host cell reactivation of UV-and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology, 115, 237–48.

    Article  PubMed  CAS  Google Scholar 

  56. Norris, P.G., Lehmann, A., Cole, J., Arlett, C.F., and Hawk, J.L.M. (1991) Photosensitivity and lymphocyte hypermutability in Cockayne’s syndrome. Br. J. Dermatol., 124, 453–60.

    Article  PubMed  CAS  Google Scholar 

  57. Lehmann, A.R., Arlett, C.F., Broughton, B.C. et al. (1988) Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light. Cancer Res., 48, 6090–96.

    PubMed  CAS  Google Scholar 

  58. Broughton, B.C., Lehmann, A.R., Harcourt, S.A. et al. (1990) Relationship between pyrimidine dimers, 6-4 photoproducts, repair synthesis and cell survival: studies using cells from patients with trichothiodystrophy. Mutat. Res., 235, 33–40.

    Article  PubMed  CAS  Google Scholar 

  59. Stefanini M., Lagomarsini, P., Giliani, S. et al. (1993) Genetic heterogeneity of the excision repair defect associated with trichothiodystrophy. Carcinogenesis, 14, 1101–5.

    Article  PubMed  CAS  Google Scholar 

  60. Stefanini, M., Vermeulen, W., Weeda, G. et al. (1993) A new nucleotide excision repair gene associated with the genetic disorder trichothiodystrophy. Am. J. Hum. Genet., 53, 817–21.

    PubMed  CAS  Google Scholar 

  61. Vermeulen, W., Van Vuuren, A.J., Chipoulet, M. et al., (1994) Three excision repair proteins in transcription factor BTF2(TFIIH). Evidence for the existence of a transcription syndrome. Cold Spring Harbor Symp. Quant. Biol., 59, 317–29.

    Article  PubMed  CAS  Google Scholar 

  62. Mayne, L.V., Jones, T., Dean, S.W. et al. (1988) SV40-transformed normal and DNA-repair-deficient human fibroblasts can be transfected with high frequency but retain only limited amounts of integrated DNA. Gene, 66, 65–76.

    Article  PubMed  CAS  Google Scholar 

  63. Tanaka, K., Satokato, I., Ogita, Z., Uchida, T. and Okada, Y. (1989) Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc. Natl Acad. Sci. USA, 86, 5512–16.

    Article  PubMed  CAS  Google Scholar 

  64. Legerski, R. and Peterson, C. (1992) Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature, 359, 70–3.

    Article  PubMed  CAS  Google Scholar 

  65. Hoeijmakers, J.H.J., Odijk, H. and Westerveld, A. (1987) Differences between rodent and human cell lines in the amount of integrated DNA after transfection. Exp. Cell Res., 169, 111–19.

    Article  PubMed  CAS  Google Scholar 

  66. Hoeijmakers, J.H.J. and Bootsma, D. (1990) Molecular genetics of eukaryotic DNA excision repair. Cancer Cells, 2, 311–20.

    PubMed  CAS  Google Scholar 

  67. Masutani, C, Sugasawa, K., Yanagisawa, J. et al. (1994) Purification and cloning of a nucleotide excision-repair complex involving the xeroderma-pigmentosum group-C protein and a human homolog of yeast rad23. EMBO J., 13, 1831–43.

    PubMed  CAS  Google Scholar 

  68. Takao, M., Abramic, M., Moos, M. et al. (1993) A 127 KDa component of a UV-damaged DNA-binding complex, which is defective in some xeroderma-pigmentosum group-E patients, is homologous to a slimemould protein. Nucleic Acids Res., 21, 4111–18.

    Article  PubMed  CAS  Google Scholar 

  69. Wood, R.D., Robins, P. and Lindahl, T. (1988) Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 53, 97–106.

    Article  PubMed  CAS  Google Scholar 

  70. Wood, R.D. (1989) Repair of pyrimidine dimer ultraviolet light photoproducts by human cell extracts. Biochemistry, 28, 8287–92.

    Article  PubMed  CAS  Google Scholar 

  71. Biggerstaff, M. and Wood, R.D. (1992) Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro. Complementation using rodent and human cell extracts. J. Biol. Chem., 267, 6879–85.

    PubMed  CAS  Google Scholar 

  72. Tanaka, K., Naoyuki, M., Satokata, I. et al. (1990) Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature, 348, 73–6.

    Article  PubMed  CAS  Google Scholar 

  73. Miyamoto, I., Miura, N., Niwa, H., Miyazaki, J. and Tanaka, K. (1992) Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localisation and DNA excision repair. J. Biol. Chem., 267, 12182–7.

    PubMed  CAS  Google Scholar 

  74. Robins, P., Jones, C.J., Biggerstaff, M., Lindahl. T. and Wood, R.D. (1991) Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J., 10, 3913–21.

    PubMed  CAS  Google Scholar 

  75. Tanaka, K. (1993) Analysis of DNA excision repair genes in XP, in Frontiers of Photobiology, (eds A. Shima, M. Ichahashi, Y. Fujiwara and H. Takebe), Excerpta Medica, Amsterdam, pp.293–302.

    Google Scholar 

  76. Satokata, I., Tanaka, K., Miura, N. et al. (1990) Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc. Natl Acad. Sci. USA, 87, 9908–12.

    Article  PubMed  CAS  Google Scholar 

  77. Cleaver, J.E., Cortes, F., Lutze, L.H., Morgan, W.F., Player, A.N. and Mitchell, D.L. (1987) Unique DNA repair properties of a xeroderma pigmentosum revertant. Mol. Cell. Biol., 7, 3353–7.

    PubMed  CAS  Google Scholar 

  78. McDowell, L., Nguyen, T. and Cleaver, J.E. (1993) A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis, 8, 155–61.

    Article  PubMed  CAS  Google Scholar 

  79. Weeda, G., Van Ham, R.C.A., Vermeulen, W., Bootsma, D., Van Der Eb, A. J. and Hoeijmakers, J.H.J. (1990) A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell, 62, 777–91.

    Article  PubMed  CAS  Google Scholar 

  80. Li, L., Bales, E.S., Peterson, C.A. and Legerski, R.J. (1993) Characterization of molecular defects in xeroderma pigmentosum group C. Nature Genet., 5, 413–7.

    Article  PubMed  CAS  Google Scholar 

  81. Weber, C.A., Salazar, E.P., Stewart, S.A. and Thompson, L.H. (1990) ERCC-2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J., 9, 1437–48.

    PubMed  CAS  Google Scholar 

  82. Gozukara, E.M., Parris, C.N., Weber, CA. et al. (1994) The human DNA repair gene, ERCC2 (XPD), corrects ultraviolet hypersensitivity and ultraviolet hypermutability of a shuttle vector replicated in xeroderma pigmentosum group D cells. Cancer Res., 54, 3837–44.

    PubMed  CAS  Google Scholar 

  83. Flejter, W.L., McDaniel, L.D., Johns, D., Friedberg, E.C. and Schultz R.A. (1992) Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. Natl Acad. Sci. USA, 89, 261–5.

    Article  PubMed  CAS  Google Scholar 

  84. Mezzina, M., Eveno, E., Chevallier Lagente, O. et al. (1994) Correction by the ERCC2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells. Carcinogenesis, 15, 1493–8.

    Article  PubMed  CAS  Google Scholar 

  85. Murray, J.M., Doe, C, Schenk, P., Carr, A.M., Lehmann, A.R. and Watts, F.Z. (1992) Cloning and characterisation of the S. pombe rad 15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res., 20, 2673–8.

    Article  PubMed  CAS  Google Scholar 

  86. Sung, P., Prakash, L., Matson, S.W. and Prakash, S. (1987) RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc. Natl Acad. Sci. USA, 84, 8951–5.

    Article  PubMed  CAS  Google Scholar 

  87. Sung, P., Bailly, V., Weber, C, Thompson, L.H., Prakash, L. and Prakash, S. (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature, 365, 852–5.

    Article  PubMed  CAS  Google Scholar 

  88. Song, J.M., Montelone, B.A., Siede, W. and Friedberg, E.C. (1990) Effects of multiple rad3 alleles on UV sensitivity, mutability, and mitotic recombination. J. Bacteriol., 172, 6620–30.

    PubMed  CAS  Google Scholar 

  89. Broughton, B.C., Steingrimsdottir, H., Weber, C. and Lehmann, A.R. (1994) Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nature Genet., 7, 189–94.

    Article  PubMed  CAS  Google Scholar 

  90. Chu, G. and Chang, E. (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science, 242, 564–7.

    Article  PubMed  CAS  Google Scholar 

  91. Keeney, S., Wein, H. and Linn, S. (1992) Biochemical heterogeneity in xeroderma pigmentosum complementation group E. Mutat. Res., 273, 49–56.

    Article  PubMed  CAS  Google Scholar 

  92. Keeney, S., Eker, A.P.M., Brody, T. et al. (1994) Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein. Proc. Natl Acad. Sci. USA, 91, 4053–6.

    Article  PubMed  CAS  Google Scholar 

  93. Tomkinson, A.E., Bardwell, A.J., Bardwell, L., Tappe, N.J. and Friedberg, E.C. (1993) Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature, 362, 860–2.

    Article  PubMed  CAS  Google Scholar 

  94. Van Duin, M., Vedeveldt, G., Mayne, L.V et al. (1989) The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. Mutat. Res., 217, 83–92.

    Article  PubMed  CAS  Google Scholar 

  95. Biggerstaff, M., Szymkowski, D.E. and Wood, R.D. (1993) Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J., 12, 3685–92.

    PubMed  CAS  Google Scholar 

  96. Van Vuuren, A.J., Appeldoorn, E., Odijk, H. et al. (1993) Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J., 12, 3693–701.

    PubMed  CAS  Google Scholar 

  97. Scherly D., Nouspikel T., Corlet J., Ucla C., Bairoch A. and Clarkson S.G. (1993) Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature, 363, 182–5.

    Article  PubMed  CAS  Google Scholar 

  98. Maclnnes, M.A., Dickson, J.A., Hernandez, R.R. et al. (1993) Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol. Cell. Biol., 13, 6393–402.

    Google Scholar 

  99. O’Donovan A. and Wood R.D. (1993) Identical defect in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature, 363, 185–8.

    Article  PubMed  Google Scholar 

  100. O’Donovan, A., Davies, A.A., Moggs, J.G., West, S.C. and Wood, R.D. (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature, 371, 432–5.

    Article  PubMed  Google Scholar 

  101. Gulyas, K.D. and Donahue, T.F. (1992) SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell, 69, 1031–42.

    Article  PubMed  CAS  Google Scholar 

  102. Park, E., Guzder, S.N., Koken, M.H.M. et al. (1992) RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl Acad. Sci. USA, 89, 11416–20.

    Article  PubMed  CAS  Google Scholar 

  103. Mounkes, L.C., Jones, R.S., Liang, B-C., Gelbart, W. and Fuller, M.T. (1992) A Drosophila model for xeroderma pigmentosum and Cockayne’s syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell, 71, 925–37.

    Article  PubMed  CAS  Google Scholar 

  104. Schaeffer, L., Roy, R., Humbert, S. et al. (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science, 260, 58–63.

    Article  PubMed  CAS  Google Scholar 

  105. van Vuuren, A. J., Vermeulen, W., Ma, L. et al. (1994) Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). EMBO J., 13, 1645–53.

    PubMed  Google Scholar 

  106. Schaeffer, L., Monocollin, V., Roy, R. et al. (1994) The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J., 13, 2388–92.

    PubMed  CAS  Google Scholar 

  107. Drapkin, R., Reardon, J. T., Ansari, A. et al. (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature, 368, 769–72.

    Article  PubMed  CAS  Google Scholar 

  108. Li, L., Elledge, S.J., Peterson, C.A., Bales, E.S. and Legerski, R.J. (1994) Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl Acad. Sci. USA, 91, 5012–16.

    Article  PubMed  CAS  Google Scholar 

  109. Park, C-H. and Sancar, A. (1994) Formation of ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc. Natl Acad. Sci. USA, 91, 5017–21.

    Article  PubMed  CAS  Google Scholar 

  110. Bardwell, A.J., Bardwell, L., Tomkinson, A.E. and Friedberg, E.C. (1994) Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science, 265, 2082–5.

    Article  PubMed  CAS  Google Scholar 

  111. Ziegler, A., Leffell, D.J., Kunala, S. et al. (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc. Natl Acad. Sci. USA, 90, 4216–20.

    Article  PubMed  CAS  Google Scholar 

  112. Dumaz, N., Drougar, C., Sarasin, A. and Daya-Grosjean, L. (1993) Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA repair deficient xeroderma pigmentosum patients. Proc. Natl Acad. Sci. USA, 90, 10529–33.

    Article  PubMed  CAS  Google Scholar 

  113. Bootsma D. and Hoeijmakers, J.H.J. (1993) Engagement with transcription. Nature, 363, 114–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arlett, C.F., Lehmann, A.R. (1996). Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: sun sensitivity, DNA repair defects and skin cancer. In: Eeles, R.A., Ponder, B.A.J., Easton, D.F., Horwich, A. (eds) Genetic Predisposition to Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-4501-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-4501-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-56580-9

  • Online ISBN: 978-1-4899-4501-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics