Skip to main content

Atherosclerosis in perspective: the pathophysiology of human cholesterol metabolism

  • Chapter

Abstract

All animal cells share a common need for cholesterol which they obtain either by endogenous synthesis or by assimilation from the diet. The steroid nucleus plays both structural and metabolic roles. In cell membranes it is considered to act as a regulator of the micro-environment, maintaining a fluidity appropriate to the normal operation of membrane-linked enzyme systems and transport proteins. In specialized tissues such as the adrenal, gonad and liver it undergoes a variety of oxidation steps which increase its polarity and permit its direct transit through the aqueous fluids of the body. The parent sterol molecule lacks this facility and must therefore be solubilized by interaction with a number of amphipathic agents. In plasma it exists in association with phospholipid and certain proteins to form the lipid—protein complexes that we call lipoproteins. In bile, on the other hand, bile salts and phospholipid act as its emulsifying agents, leading to the production of micellar aggregates. These two transport systems are subject to interdependent regulation in the liver (Shepherd and Packard, 1987). Disturbances of either lead to pathological sequelae which result in deposition of the sterol in unusual sites like the gallbladder and the intima of artery walls. Such deposits are highly resistant to mobilization and further accretion leads to the macroscopic lesions which we recognize as gallstones and atherosclerotic plaques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, J.J., Tollefson, J.H., Chen, C.H. and Steinmetz, A. (1984) Isolation and characterisation of human plasma lipid transfer proteins. Arteriosclerosis, 4, 49–58.

    Article  CAS  Google Scholar 

  • Anggard, E., Land, J.M., Lenihan, C.J., et al. (1986) Prevention of cardiovascular disease in general practice: a proposed model. Br. Med. J., 293, 177–80.

    Article  CAS  Google Scholar 

  • Balasubramaniam, S., Mitropolous, K.A. and Myant, N.B. (1973) Evidence for the compartmentalisation of cholesterol in rat liver microsomes. Eur. J. Biochem., 34, 77–83.

    Article  CAS  Google Scholar 

  • Barbaras, R., Puchois, P., Fruchart, J.C., et al. (1990) Purification of an apolipoprotein A binding protein from mouse adipose cells. Biochem. J., 269, 767–73.

    CAS  Google Scholar 

  • Beisiegel, V., Weber, W., Ihrke, G., et al. (1989) The LDL receptor related protein, LRP, is an apolipoprotein E binding protein, Nature, 341, 162–7.

    Article  CAS  Google Scholar 

  • Beltz, W.F., Young, S.G. and Witztum, J.L. (1987) Heterogeneity in low density lipoprotein metabolism, in Proceedings of the Workshop on Lipoprotein Heterogeneity (ed. K. Lippel), NIH Publications No. 87–2646, Bethesda, USA, pp. 215–36.

    Google Scholar 

  • Bilheimer, D.W., Grundy, S.M., Brown, M.S. and Goldstein, J.L. (1983) Mevinolin and colestipol stimulate receptor mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc. Natl Acad. Sci. USA, 80, 4124–8.

    Article  CAS  Google Scholar 

  • Blankenhorn, D.H., Nessini, S.A., Johnson, R.L., et al. (1987) Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA, 257, 3233–40.

    Article  CAS  Google Scholar 

  • Blum, C.B., Levy, R.I., Eisenberg, S., et al. (1977) High density lipoprotein metabolism in man. J. Clin. Invest., 60, 795–807.

    Article  CAS  Google Scholar 

  • Breckenridge, W.C., Little, J.A., Steiner, G., et al. (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein CII. N. Engl, J. Med., 298, 1265–70.

    Article  CAS  Google Scholar 

  • Brown, M.S. and Goldstein, J.L. (1983) Lipoprotein metabolism in the macrophage. Implications for cholesterol deposition in atherosclerosis. Ann. Rev. Biochem., 52, 223–61.

    Article  CAS  Google Scholar 

  • Cortese, C., Levy, Y., Janus, E.D., et al. (1983) Modes of action of lipid lowering diets in man: studies of apolipoprotein B kinetics in relation to fat consumption and dietary fat composition. Eur. J. Clin. Invest., 13, 79–85.

    Article  CAS  Google Scholar 

  • Dietschy, J.M. (1984) Regulation of cholesterol metabolism in man and in other species. Klin. Wochenschr., 62, 338–45.

    Article  CAS  Google Scholar 

  • Eisenberg, S., Gavish, D., Oschry, Y., et al. (1984) Abnormalities in very low, low and high density lipoproteins in hypertriglyceridaemia. Reversal toward normal with bezafibrate treatment. J. Clin. Invest., 74, 470–82.

    Article  CAS  Google Scholar 

  • Fagiotto, A., Ross, R. and Harker, L. (1984) Studies of hypercholesterolemia in the non-human primate. I. Changes that lead to fatty streak formation. Arteriosclerosis, 4, 323–40.

    Article  Google Scholar 

  • Fielding, C.J. and Fielding, P.E. (1981) Regulation of human plasma lecithin: cholesteryl acyl transferase activity by lipoprotein acceptor cholesteryl ester content. J. Biol. Chem., 256, 2102–4.

    CAS  Google Scholar 

  • Goldstein, J.L. and Brown, M.S. (1977) The low density lipoprotein pathway and its relation to atherosclerosis. Ann. Rev. Biochem., 46, 897–930.

    Article  CAS  Google Scholar 

  • Goldstein, J.L. and Brown, M.S. (1989) Familial hypercholesterolemia, in The Metabolic Basis of Inherited Disease (eds C.R. Scriver, A.L. Beaudet, W.S. Sly and D. Valle), McGraw Hill, New York, pp. 1215–50.

    Google Scholar 

  • Goldstein, J.L., Ho, Y.K., Basu, J.K. and Brown, M.S. (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein producing massive cholesteryl ester deposition. Proc. Natl Acad. Sci. USA, 76, 333–7.

    Article  CAS  Google Scholar 

  • Griffin, B.A., Caslake, M.J., Yip, B., et al. (1990) Rapid isolation of LDL subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis, 83, 59–67.

    Article  CAS  Google Scholar 

  • Havel, R.J., Goldstein, J.L. and Brown, M.S. (1980) Lipoproteins and lipid transport, in Metabolic Control and Disease (eds P.R. Bondy and L.E. Rosenberg), W.B. Saunders, Philadelphia, pp. 393–494.

    Google Scholar 

  • Henricksen, T., Mahoney, E.M. and Steinberg, D. (1983) Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis, 3, 149–59.

    Article  Google Scholar 

  • Houlston, R., Quiney, J., Mount, J., et al. (1988) Lipoprotein(a) and coronary heart disease in familial hypercholesterolaemia. Lancet, ii, 405.

    Article  Google Scholar 

  • Karlin, J.B., Johnson, W.J., Benedict, C.R., et al. (1987) Cholesterol flux between cells and high density lipoprotein. J. Biol. Chem., 262, 12557–64.

    CAS  Google Scholar 

  • Kesaniemi, Y.A. and Grundy, S.M. (1984) Turnover of low density lipoproteins during inhibition of cholesterol absorption by neomycin. Atherosclerosis, 4, 41–8.

    CAS  Google Scholar 

  • Kondo, I., Berg, K., Drayna, D. and Lawn, R. (1989) DNA polymorphism at the locus for human cholesteryl ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin. Genet, 35, 49–56.

    Article  CAS  Google Scholar 

  • Kuusi, T., Saarinen, P. and Nikkila, E.A. (1980) Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein2 in man. Atherosclerosis, 36, 589–93.

    Article  CAS  Google Scholar 

  • McLean, J.W., Tombinson, J.E. and Kuang, W.J. (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature, 300, 132–7.

    Article  Google Scholar 

  • Mahley, R.W., Hui, D.Y., Innerarity, T.L. and Weisgraber, K.H. (1981) Two independent lipoprotein receptors on hepatic membranes of dog, swine and man. J. Clin. Invest., 68, 1197–206.

    Article  CAS  Google Scholar 

  • Mann, J.L., Lewis, B., Shepherd, J., et al. (1988) Blood lipid concentrations and other risk factors: distribution, prevalence and detection. Br. Med. J., 296, 1702–6.

    Article  CAS  Google Scholar 

  • Miles, L.A., Fless, G.M., Levin, E.G., et al. (1989) A potential basis for the thrombotic risks associated with lipoprotein (a). Nature, 338, 301–3.

    Article  Google Scholar 

  • Nestel, P., Tada, N., Billington, T., et al. (1982) Changes in very low density lipoproteins with cholesterol loading in man. Metabolism, 31, 398–405.

    Article  CAS  Google Scholar 

  • Packard, C.J., McKinney, L., Carr, K. and Shepherd, J. (1983) Cholesterol feeding increases low density lipoprotein synthesis. J. Clin. Invest., 72, 45–51.

    Article  CAS  Google Scholar 

  • Packard, C.J. and Shepherd, J. (1982) The hepatobiliary axis and lipoprotein metabolism. J. Lipid Res., 23, 1081–98.

    CAS  Google Scholar 

  • Packard, C.J. and Shepherd, J. (1983) Low density lipoprotein receptor pathway in man: its role in regulating plasma low density lipoprotein levels. Atheroscler. Revs, 11, 29–64.

    CAS  Google Scholar 

  • Powell, L.M., Wallis, S.C., Pease, R.J., et al. (1987) A novel form of tissue specific RNA processing produces apolipoprotein B48 in intestine. Cell, 50, 831–8.

    Article  CAS  Google Scholar 

  • Quintao, E., Grundy, S.M. and Ahrens, E.H. (1971) Effects of dietary cholesterol on the regulation of total body cholesterol in man. J. Lipid Res., 12, 233–47.

    CAS  Google Scholar 

  • Ross, R. (1981) Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis, 1, 293–311.

    Article  CAS  Google Scholar 

  • Rudel, L.L. and Parks, J.S. (1982) Different kinetic fates of apolipoproteins AI and AII from lymph chylomicra of non human primates. Effect of saturated versus polyunsaturated dietary fat. J. Lipid Res., 23, 410–21.

    Google Scholar 

  • Schonfeld, G., Patsch, W., Rudel, L.L., et al. (1982) Effects of dietary cholesterol and fatty acids on plasma lipoproteins. J. Clin. Invest., 62, 1072–80.

    Article  Google Scholar 

  • Shaper, A.G., Pocock, S.J., Walker, M., et al. (1985) Risk factors for ischaemic heart disease: the prospective phase of the British Regional Heart Study. J. Epidemiol. Community Health, 39, 197–209.

    Article  CAS  Google Scholar 

  • Shepherd, J., Bicker, S., Lorimer, A.R. and Packard, C.J. (1979) Receptor mediated low density lipoprotein catabolism in man. J. Lipid Res., 20, 999–1006.

    CAS  Google Scholar 

  • Shepherd, J. and Packard, C.J. (1987) Lipid transport through the plasma: the metabolic basis of hyperlipidaemia. Ballieres Clinical Endocrinology and Metabolism, 1, 495–514.

    Article  CAS  Google Scholar 

  • Shepherd, J., Packard, C.J., Grundy, S.M., et al. (1980) Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J. Lipid Res., 21, 91–9.

    CAS  Google Scholar 

  • Shepherd, J., Packard, C.J., Patsch, J.R., et al. (1978) Effects of dietary polyunsaturated and saturated fat on the properties of high density lipoproteins and the metabolism of apolipoprotein AI. J. Clin. Invest., 61, 1582–92.

    Article  CAS  Google Scholar 

  • Simpson, H.S., Williamson, C.M., Pringle, S., et al. (1989) Hypolipidemic drugs and chylomicron metabolism, in Intestinal Lipid and Lipoprotein Metabolism (eds E. Windier and H. Greten), W. Zuchschwerdt Verlag, Munich, 194–201.

    Google Scholar 

  • Slack, J. (1969) Risks of ischaemic heart disease in familial hypercholesterolaemic states. Lancet, ii, 1380–2.

    Article  Google Scholar 

  • Slater, H.R., Packard, C.J. and Shepherd, J. (1982) Receptor-independent catabolism of low density lipoprotein: involvement of the reticuloendothelial system. J. Biol. Chem., 257, 307–10.

    CAS  Google Scholar 

  • Starzl, T.E., Bahnson, H.T., Hardesty, R.L., et al. (1984) Heart-liver transplantation in a patient with familial hypercholesterolaemia. Lancet, i, 1382–3.

    Article  Google Scholar 

  • Study Group, European Atherosclerosis Society (1987) Strategies for the prevention of coronary heart disease: a policy statement of the European Atherosclerosis Society. Eur. Heart J., 8, 77–88.

    Google Scholar 

  • Ueshima, H., Iida, M. and Shimamoto, T. (1982) Dietary intake and total serum cholesterol level: their relationship to different lifestyles in several Japanese populations. Circulation, 66, 519–26.

    Article  CAS  Google Scholar 

  • Utermann, G., Menzel, H.J., Kraft, H.G., et al. (1987) Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a) — lipoprotein concentrations in plasma. J. Clin. Invest., 80, 458–65.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shepherd, J., Packard, C.J. (1992). Atherosclerosis in perspective: the pathophysiology of human cholesterol metabolism. In: Human Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-4495-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-4495-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-40310-1

  • Online ISBN: 978-1-4899-4495-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics