Skip to main content

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 37))

Abstract

Consider a multispecies ecosystem (e.g., predator-prey) that is exploited by different groups of harvesters. Each group will concentrate on a single species. The operation is to be directed by a manager who must set rules for the maximum level of harvesting by each group of harvesters. The manager must set these limits without knowing the specific details of how the harvesters may actually operate under these rules, except that it is assumed that the harvesters will not violate the maximum limits. The manager’s objective is to “maximize” the harvested yield for each species without having any of them become endangered by being driven to unacceptably low population levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goh, B. S., Leitmann, G., and Vincent, T. L., Optimal Control of a Prey-Predator System, Mathematical Biosciences, 19, 263–286, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  2. Vincent, T. L., Cliff, E. M., and Goh, B. S., Optimal Direct Control Programs for a Prey-Predator System, Journal of Dynamical Systems Management and Control, 96, 71–76, 1974.

    Article  Google Scholar 

  3. Vincent, T. L., Pest Management via Optimal Control Theory, Biometrics, 31, 1–10, 1975.

    Article  MATH  Google Scholar 

  4. May, R. M., Beddington, J. R., Clark, C. W., Holt, S. J., and Laws, R. M., Management of Multispecies Fisheries, Science, 205, 267–277, 1979.

    Article  Google Scholar 

  5. Beddington, J. R., and May, R. M., Maximum Sustainable Yields in Systems Subject to Harvesting at More Than One Trophic Level, Mathematical Bioscien-ces, 51, 261–281, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rosenzweig, M. L., and MacArthur, R. H., Graphical Representation and Stability Conditions of Predator-Prey Interactions, American Nature, 97, 209–223, 1963.

    Article  Google Scholar 

  7. Noy-Meir, I., Stability of Grazing Systems: An Application of Predator-Prey Graphs, Journal of Ecology, 63, 459–481, 1975.

    Article  Google Scholar 

  8. Rosenzweig, M. L., Aspects of Biological Exploitation, Quarterly Review of Biology, 52, 371–380, 1977.

    Article  Google Scholar 

  9. Brauer, F., and Soudack, A. C., Stability Regions in Predator-Prey Systems with Constant-Rate Prey Harvesting, Journal of Mathematical Biology, 8, 55–71, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  10. Goh, B. S., Stability in a Stock-Recruitment Model of an Exploited Fishery, Mathematical Biosciences, 33, 359–372, 1977.

    Article  MATH  Google Scholar 

  11. Beddington, J. R., and May, R. M., Harvesting Natural Populations in the Randomly Fluctuating Environment, Science, 197, 463–465, 1977.

    Article  Google Scholar 

  12. Vincent, T. L., and Grantham, W. J., Optimality in Parametric Systems, Wiley-Interscience, New York, 1981.

    MATH  Google Scholar 

  13. Goh, B. S., Nonvulnerability in Ecosystems in Unpredictable Environments, Theoretical Population Biology, 10, 83–95, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  14. LaSalle, J., and Lefschetz, S., Stability by Liapunov’s Direct Method, AcademiC., New York, 1961.

    Google Scholar 

  15. Vincent, T. L., and Anderson, L. R., Return Time and Vulnerability for a Food Chain Model, Theoretical Population Biology, 15, 217–231, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grantham, W. J., and Vincent, T. L., A Controllability Minimum Principle, Journal of Optimization Theory and Applications, 17, 93–114, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nash, J. F., Noncooperative Games, Annals of Mathematics, 54, 286–295, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  18. Pareto, V., Cours d’Economie Politique, Rouge, Lausanne, Switzerland, 1896.

    Google Scholar 

  19. Salukvadze, M. E., Optimization of Vector Functional (in Russian), Avtomatika i Telemechanika, 8 & 9, 9–15, 1971.

    Google Scholar 

  20. Simaan, M., and Cruz, J. B., Jr., On the Stackelburg Strategy in Non-Zero Sum Games, Journal of Optimization Theory and Applications, 11, 553–555, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vincent, T.L. (1988). Renewable Resource Management. In: Stadler, W. (eds) Multicriteria Optimization in Engineering and in the Sciences. Mathematical Concepts and Methods in Science and Engineering, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3734-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3734-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3736-0

  • Online ISBN: 978-1-4899-3734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics