Skip to main content

Multicriteria Optimization Techniques for Highly Accurate Focusing Systems

  • Chapter
Multicriteria Optimization in Engineering and in the Sciences

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 37))

Abstract

The following considerations show the necessity of introducing optimization procedures into the practical construction phase:

  1. 1.

    Increasing the quality and quantity of products and plants and reducing the costs and thereby securing competition at the same time.

  2. 2.

    Fulfilling the permanently increasing specification demands as well as considering reliability and security proofs, observing severe pollution regulations, and saving energy and raw materials.

  3. 3.

    Introducing inevitable rationalization measures in development and design offices (CAD, CAE) in order to save more time for creative working of the staff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pareto, V., Cours d-Economie Politique, Rouge, Lausanne, Switzerland, 1896.

    Google Scholar 

  2. Stadler, W., Preference Optimality and Applications of Pareto Optimality, Multicriterion Decision Making (A. Marzollo and G. Leitmann, eds.), CISM Courses and Lectures, Springer-Verlag, Berlin, Germany, 1975.

    Google Scholar 

  3. Stadler, W., Multicriteria Optimization in Mechanics (A Survey), Applied Mechanics Reviews, 37, 227–286, 1984.

    Google Scholar 

  4. Baier, H., Mathematische Programmierung zur Optimierung von Tragwerken insbesondere bei mehrfachen Zielen, Technische Hochschule Darmstadt, Darmstadt, Germany, Ph.D. thesis, 1978.

    Google Scholar 

  5. Bendsoe, M. P., Olhoff, N., and Taylor, J. E., A Variational Formulation for Multicriteria Structural Optimization, Danish Center for Applied Mathematics and Mechanics, Technical University of Denmark, Lyngby, Denmark, Report No. 258, 1983.

    Google Scholar 

  6. Koski, J., Truss Optimization with Vector Criterion, Tampere University of Technology, Department of Mechanical Engineering, Tampere, Finland, Publication No. 6, 1979.

    Google Scholar 

  7. Olhoff, N., and Taylor, J. E. On Structural Optimization, Journal of Applied Mechanics, 50, 1139–1151, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  8. Eschenauer, H., Numerical and Experimental Investigation on Structural Optimization of Constructions, Institute of Mechanics and Control Engineering, University of Siegen, Siegen, Germany, DFG-Report, 1986.

    Google Scholar 

  9. Griffith, R. E., and Stewart, R. A., A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems, Management Science, 7, 379–392, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuhn, H. W., and Tucker, A. W., Nonlinear Programming, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley, California, 1951.

    Google Scholar 

  11. N. N. Sapvn, A Structural Analysis Program for Static and Dynamic Response of Linear Systems, Department of Civil Engineering, University of Southern California, Los Angeles, Computer Program, 1977.

    Google Scholar 

  12. Nowak, E., Übertragungsverfahren zur Berechnung orthotrop versteifter Rotationsschalen unter allgemeiner Belastung, Institute of Mechanics and Control Engineering, University of Siegen, Siegen, Germany, Report, 1984.

    Google Scholar 

  13. Pierre, D. A., and Lowe, M. J., Mathematical Programming via Augmented Lagrangian, Addison-Wesley, London, England, 1975.

    Google Scholar 

  14. Hettich, R., Charakterisierung lokaler Pareto-Optima, Optimization and Operations Research, Lecture Notes in Economics and Operations Research (W. Oettli and K. Ritter, eds.), No. 117, Springer-Verlag, Berlin, Germany, 1976.

    Google Scholar 

  15. Sattler, H.-J., Ersatzprobleme für Vektoroptimierungsaufgaben und ihre Anwendung in der Strukturmechanik, University of Siegen, Siegen, Germany, Ph.D. thesis, 1982.

    Google Scholar 

  16. Isermann, H., Strukturierung von Entscheidungsprozessen bei mehrfacher Zielsetzung, Operations Research Spectrum, 1, 3–26, 1979.

    Article  MATH  Google Scholar 

  17. Ahlers, H., Schwartz, B., and Waldmann, J., Optimierung technischer Produkte und Prozesse, VEB Technik, Berlin, Germany, 1981.

    Book  Google Scholar 

  18. Duck, W., Optimierung unter mehreren Zielen, Vieweg-Verlag, Braunschweig, Germany, 1979.

    Book  Google Scholar 

  19. Fandel, G., Optimale Entscheidung bei mehrfacher Zielsetzung, Lecture Notes in Economics and Mathematical Systems, No. 76, Springer-Verlag, Berlin, Germany, 1972.

    Book  Google Scholar 

  20. Sattler, H.-J., Eine Herleitung der Zielgewichtung in der Vektoroptimierung aus einer Abstandsfunktionsformulierung, Zeitschrift für Angewandte Mathematik und Mechanik, 62, T382–T384, 1982.

    MathSciNet  Google Scholar 

  21. Charnes, A., and Cooper, W. W., Management Models and Industrial Application of Linear Programming, Vol. 1, Wiley, New York, 1961.

    Google Scholar 

  22. Osyczka, A., Multicriterion Optimization in Engineering, Wiley, New York, 1984.

    Google Scholar 

  23. Eschenauer, H., and Kneppe, G., Min-Max-Formulierungen als Strategie in der Gestaltsoptimierung, Zeitschrift für Angewandte Mathematik und Mechanik, 66, T344–T345, 1986.

    Google Scholar 

  24. Fox, R. L., Optimization Methods for Engineering Design, Addison-Wesley, London, England, 1971.

    Google Scholar 

  25. Kneppe, G., Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentrag-werken, University of Siegen, Siegen, Germany, Ph.D. thesis, 1985.

    Google Scholar 

  26. Eschenauer, H., Kneppe, G., and Stenvers, K.-H., Deterministic and Stochastic Multiobjective Optimization of Beam and Shell Structures, ASME Journal of Mechanisms, Transmissions and Automation in Design, 108, 31–37, 1986.

    Article  Google Scholar 

  27. Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  28. Eschenauer, H., and Rusel, J., Parabolantennen als Komponenten von Nachrichten-Übermittlungssystemen, Nachrichten Elektronik, 11 & 12, 418–427, 472–477, 1981.

    Google Scholar 

  29. Ruze, J., Antenna Tolerance Theory—A Review, Proceedings of the IEEE, 54, 633–640, 1966.

    Article  Google Scholar 

  30. Heilmann, A., Antennen, Bibliographisches Institut, Zurich, Switzerland, 1970.

    Google Scholar 

  31. Eschenauer, H., and Brandt, P., Über die Optimierung der Tragstrukturen von Parabolantennen, Technische Mitteilungen Krupp, Forschungsberichte, 30, 101–114, 1972.

    Google Scholar 

  32. Sattler, H.-J., Iterative Ermittlung eines elliptischen Ausgleichsparaboloids durch n vorgegebene Punkte nach der Methode der kleinsten Quadrate, Institute of Mechanics and Control Engineering, University of Siegen, Siegen, Germany, Report, 1982. Addendum by H. Eschenauer, W. Fuchs, and P. Post, 1983.

    Google Scholar 

  33. Eschenauer, H., and Henning, G., Parameterstudie über das Schwingungsverhalten regelbarer Grossantennen mit Hilfe dynamischer Ersatzmodeile, Technische Mitteilungen Krupp, Forschungsberichte, 34, 87–97, 1976.

    Google Scholar 

  34. Eschenauer, H., Entwicklungstendenzen beweglicher grosser Parabolantennen, Raumfahrtforschung, 1, 30–37, 1974.

    Google Scholar 

  35. Baars, J. W. M., Notes on Some Geometrical Aspects of Deformed Reflector Antennas—Best-Fit Paraboloid, Max-Planck-Institut für Radioastronomie, Bonn, Germany, Memorandum No. 16, 1977.

    Google Scholar 

  36. Eschenauer, H., Gatzlaff, H., and Kiedrowski, H. W., Entwicklung und Optimierung hochgenauer Paneltragstrukturen, Technische Mitteilungen Krupp, Forschungsberichte, 38, 43–57, 1980.

    Google Scholar 

  37. Eschenauer, H., Über die Optimierung hochgenauer Tragstrukturen, Karl-Marguerre-Gedächtnisband, Schriftenreihe “THD Wissenschaft und Technik,” Darmstadt, Germany, 1980.

    Google Scholar 

  38. Eschenauer, H., Anwendung der Vektoroptimierung bei Räumlichen Tragstrukturen, Der Stahlbau, 4, 110–115, 1981.

    Google Scholar 

  39. Eschenauer, H., Vector Optimization in Structural Design and its Application on Antenna Structures, Optimization Methods in Structural Design (H. Eschenauer and N. Olhoff, eds.), Wissenschaftsverlag, Zurich, Switzerland, 1983.

    Google Scholar 

  40. Stenvers, K.-H., Stochastische Vektoroptimierung zur Auslegung von Tragwerkstrukturen—Lösungsalgorithmen und Versuchsergebnisse, University of Siegen, Siegen, Germany, Ph.D. thesis, 1985.

    Google Scholar 

  41. Eschenauer, H., Fuchs, W., and Stenvers, K.-H., Konstruktionsphase für lOm-Submillimeter-Radioteleskop-Strukturanalyse für Reflektor, Institute of Mechanics and Control Engineering, University of Siegen, Siegen, Germany, Report, 1984.

    Google Scholar 

  42. Eschenauer, H., and Vermeulen, P. J., Contribution to the Optimization of a Novel Solar Energy Collector, Zeitschrift für Flugswissenschaften, 6, 190–198, 1986.

    Google Scholar 

  43. N. N., Parametric Study for the New Technology Telescope (NTT) Mechanics, European Southern Observatory (ESO), Garching nr. Munich, Germany, Report No. 1, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eschenauer, H.A. (1988). Multicriteria Optimization Techniques for Highly Accurate Focusing Systems. In: Stadler, W. (eds) Multicriteria Optimization in Engineering and in the Sciences. Mathematical Concepts and Methods in Science and Engineering, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3734-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3734-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3736-0

  • Online ISBN: 978-1-4899-3734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics