Skip to main content

Geometry of String Space and String Field Theory

  • Chapter
Quantum Mechanics of Fundamental Systems 1
  • 134 Accesses

Abstract

The impressive recent progress in string theory [1] has taken place for the most part at the level of the first quantized formalism, while the formulation in the language of field theory is far less understood. In a second quantized, field theoretic treatment, the fundamental object is the string field Φ[X], which is a functional of the string configuration x μ (σ) becoming, upon quantization, an operator creating a string in that configuration. Formally, the classical theory will be defined by an action given in terms of a Feynman-type path integral of the form

$$ Phi ] = \int {D{x^\mu }(\sigma )L[\Phi ,\delta \Phi /\delta x]} $$
((1))

while the quantum theory is obtained from the generating functional

$$ Z = \int {D\Phi [X]} {e^{iS}} $$
((2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117 (1984);

    Article  MathSciNet  Google Scholar 

  2. D. J. Gross, E. Martinec, J. A. Harvey, and R. Rohm, Phys. Rev. Lett. 54, 502 (1985). For a review see D. Gross, Chapter 3 in this volume.

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Kaku and K. Kikkawa, Phys. Rev. D10, 1110, 1823 (1974).

    Google Scholar 

  4. W. Siegel, Phys. Lett. 151B, 391, 396 (1985).

    Article  MathSciNet  Google Scholar 

  5. T. Banks and M. E. Peskin, Nucl. Phys. B264, 513 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Friedan, Nucl. Phys. B271, 540 (1986);

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Kaku, ibid. B267, 125 (1986); A. Neveu and C. P. West, Phys. Lett. 165B, 63 (1985).

    Article  MathSciNet  Google Scholar 

  8. For a review see C. Rebbi, Phys. Rep. 12C, 1 (1974).

    Google Scholar 

  9. N. Bralic, Frog. Theor. Phys. (Suppl)86, 93 (1986).

    MathSciNet  ADS  Google Scholar 

  10. K. Bardakci, Nucl. Phys. B271, 561 (1986).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bralić, N. (1988). Geometry of String Space and String Field Theory. In: Teitelboim, C. (eds) Quantum Mechanics of Fundamental Systems 1. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3728-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3728-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3730-8

  • Online ISBN: 978-1-4899-3728-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics