Skip to main content

Update on Anomalous Theories

  • Chapter

Abstract

It is known that the. quantization procedure can spoil classical symmetries. The problem afflicts continuous chiral symmetries and gravitational symmetries of massless (Weyl) fermions, the former in any even-dimensional space-time, the latter in space-times with dimensionality 4k + 2, k = 0,1,.... [Similar quantum breaking afflicts discrete symmetries (P, T) in odd dimensions, and scale/conformai symmetries in any dimension; we shall not be concerned with these.] As a consequence, the symmetry current, whose classical conservation is assured by Noether’s theorem, ceases to be conserved after quantization. We call such a current anomalous; it possesses an anomalous divergence, and the coupling of gauge fields to this current becomes problematical [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References AND Notes

  1. For a review and references to the original literature, see S. Treiman, R. Jackiw, B. Zumino, and E. Witten, Current Algebra and Anomalies, Princeton University Press, Princeton, New Jersey/World Scientific, Singapore, 1985;

    Book  MATH  Google Scholar 

  2. For a review and references to the original literature, see S. Treiman, R. Jackiw, B. Zumino, and E. Witten, Anomalies, Geometry, Topology (W. Bardeen and A. White, eds.), World Scientific, Singapore, 1985.

    Google Scholar 

  3. For earlier review see R. Jackiw, in: Proceedings of the Oregon Meeting (R. Hwa, ed.), World Scientific, Singapore, 1986, p. 772;

    Google Scholar 

  4. R. Rajaraman, Second Asia Pacific Physics Conference, Indian Institute of Science (Bangalore) (1986) preprint;

    Google Scholar 

  5. C. Viallet, Super Field Theories (H. C. Lee, V. Elias, G. Kunstatter, R. B. Mann, and K. S. Viswanathan, eds.), Plenum, New York, 1987, p. 399.

    Chapter  Google Scholar 

  6. L. Faddeev, Phys. Lett.145B, 81 (1984);

    Article  MathSciNet  Google Scholar 

  7. J. Mickelsson, Commun. Math. Phys.97, 361 (1985);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. I. Singer, Astérisque, 323 (1985).

    Google Scholar 

  9. S.-G. Jo, Phys. Lett. 163B, 353 (1985);

    Article  MathSciNet  Google Scholar 

  10. M. Kobayashi, K. Seo, and A. Sugamoto, Nucl. Phys. B273, 607 (1986).

    Article  ADS  Google Scholar 

  11. Let me note here that other purported verifications, using regulated fixed-time procedures for calculating the anomalous commutator, in contrast to the BJL method of the above-cited investigations, are in fact incomplete: L. Faddeev and S. Shatashvili’s paper, Phys. Lett. 167B, 225 (1986), contains errors, while I. Frenkel and I. Singer did not complete their calculations. A non-BJL analysis, which apparently also confirms the conjectured form of the commutator,

    Article  Google Scholar 

  12. is by A. Niemi and G. Semenoff, Phys. Rev. Lett. 56, 1019 (1986). This interesting paper relates the anomaly phenomenon to Berry’s adiabatic phase;

    Article  MathSciNet  ADS  Google Scholar 

  13. see also G. Semenoff, Super Field Theories (H. C. Lee, V. Elias, G. Kunstatter, R. B. Mann, and K. S. Viswanathan, eds.), Plenum, New York, 1987, p. 407.

    Chapter  Google Scholar 

  14. Recent investigations with references to the older literature are D. Levy, Nucl. Phys. B282, 367 (1987);

    Article  ADS  Google Scholar 

  15. Y.-Z. Zhang, Phys. Lett. 189B, 149 (1987).

    Article  MathSciNet  Google Scholar 

  16. Jo, Niemi and Semenoff, Ref. 4.

    Google Scholar 

  17. G. Horowitz and A. Strominger, Phys. Lett. 185B, 45 (1987); A. Strominger, ibid. 187B, 149 (1987).

    Article  MathSciNet  Google Scholar 

  18. L. Faddeev, in: Supersymmetry and its Applications (G. Gibbons, S. Hawking, and P. Townsend, eds.), Cambridge University Press, Cambridge, England, 1985, p. 41; Faddeev and Shatashvili, Ref. 4.

    Google Scholar 

  19. E. D. Hoker and E. Farhi, Nucl. Phys. B248, 59, 77 (1984).

    Article  ADS  Google Scholar 

  20. J. Reiff and M. Veltman, Nucl. Phys. B13, 545 (1969).

    Article  ADS  Google Scholar 

  21. O. Babelon, F. Schaposnik, and C. Viallet, Phys. Lett. 177B, 385 (1986);

    Article  MathSciNet  Google Scholar 

  22. A. Kulikov, Setpukhov preprint No. IHEP 86–83 (1986); K. Harada and I. Tsutsui, Phys. Lett. 183B, 311 (1987);

    Article  Google Scholar 

  23. N. Falck and G. Kramer, Ann. Phys. (N.Y.) 176, 330 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 54, 1219, 2060(E),

    Google Scholar 

  25. R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 55, 2224(C) (1985).

    Article  ADS  Google Scholar 

  26. C. Hagen, Phys. Rev. Lett. 55, 2223(C) (1985);

    Article  ADS  Google Scholar 

  27. A. Das, Phys. Rev. Lett. 55, 2126 (1985); H. Ito, Nagoya University preprint (1986).

    Article  ADS  Google Scholar 

  28. R. Banerjee, Phys. Rev. Lett. 56, 1889 (1986);

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Webb, Z. Phys. C31, 301 (1986).

    Google Scholar 

  30. M. Chanowitz, Phys. Lett. 171B, 280 (1986);

    Article  Google Scholar 

  31. K. Harada, T. Kubota, and I. Tsutsui, Phys. Lett. 173B, 77 (1986);

    Article  Google Scholar 

  32. I. Halliday, E. Rabinovici, A. Schwimmer, and M. Chanowitz, Nucl. Phys. B26S, 413 (1986);

    Article  MathSciNet  ADS  Google Scholar 

  33. H. Girotti, H. Rothe, and K. Rothe, Phys. Rev. D34, 592 (1986);

    MathSciNet  ADS  MATH  Google Scholar 

  34. F. Schaposnik and J. Webb, Z. Phys. C 34, 367 (1987);

    Article  ADS  Google Scholar 

  35. R. Ball, Phys. Lett. 183B, 315 (1987);

    Article  MathSciNet  Google Scholar 

  36. K. Harada and I. Tsutsui, Prog. Theor. Phys. 78, 878 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  37. R. Rajaraman, Phys. Lett. 154B, 305 (1985);

    Article  MathSciNet  Google Scholar 

  38. J. Lott and R. Rajaraman, Phys. Lett. 165B, 321 (1985);

    Article  Google Scholar 

  39. H. Girotti, H. Rothe, and K. Rother, Phys. Rev. D 33, 514 (1986);K. Harada and I. Tsutsui, Z. Phys. C (to be published).

    Article  MathSciNet  ADS  Google Scholar 

  40. Lorentz noninvariant results have also been obtained by Halliday et al. and Chanowitz, Ref. 14; A. Niemi and G. Semenofi, Phys. Lett. 175B, 439 (1986). But these authors use a Lorentz noninvariant gauge, which cannot be justified in a gauge noninvariant theory.

    Article  MathSciNet  Google Scholar 

  41. R. Rajaraman, Phys. Lett. 162B, 148 (1985); Y.-Z. Zhang, Northwest University (Xian) preprint No. NWU-IMP-86–11 (1986).

    Article  MathSciNet  Google Scholar 

  42. R. Rajaraman, Phys. Lett. 184B, 369 (1987).

    Article  Google Scholar 

  43. S. Rajeev, MIT preprint CTP No. 1405 (1986).

    Google Scholar 

  44. H. Leutwyler, Phys. Lett. 153B, 65 (1985); J. Lott, IHES (Bures) preprint No. IHES/P/86 (1986).

    Article  MathSciNet  Google Scholar 

  45. R. Jackiw, in: Quantum Theory of Gravity (S. Christensen, ed.) Hilger, Bristol, UK, 1984, p. 403; Nucl. Phys. B252, 343 (1985);

    Google Scholar 

  46. C. Teitelboim, in: Quantum Theory of Gravity (S. Christensen, ed.), Hilger, Bristol, UK, 1984, p. 327.

    Google Scholar 

  47. K.-K. Li, Phys. Rev. D 34, 2292 (1986); F. Schaposnik and H. Vucetich, LaPlata preprint (1986).

    Article  MathSciNet  ADS  Google Scholar 

  48. L. Faddeev (private communication).

    Google Scholar 

  49. E. D’Hoker and E. Farhi, in unpublished research, have convinced themselves that their model (Ref. 9), with a kinetic term for the Wess-Zumino chiral field, is not renormalizable.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackiw, R. (1988). Update on Anomalous Theories. In: Teitelboim, C. (eds) Quantum Mechanics of Fundamental Systems 1. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3728-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3728-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3730-8

  • Online ISBN: 978-1-4899-3728-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics