Skip to main content

Monolayers and Multilayers of Biomolecules

  • Chapter

Abstract

Langmuir-Blodgett films are used for the study of ordered arrays of molecules, usually capable of forming insoluble monolayers at an air-water interface. The structure in biology which would appear to be most amenable to study by the Langmuir-Blodgett technique is the membrane. Our understanding of its composition, structure, and dynamics has to account for a wide range of its functions in vivo. As barriers, they are able to maintain large concentration gradients, both ionic and nonionic Yet the proteins found embedded in the membrane are capable of dissipating and regenerating these gradients, sometimes very rapidly. Membranes are sites of contact and recognition, be it of other cells or of chemical signals and they can adopt a variety of forms. For example they can pit or fragments can “bud” off from the main structure and they can fuse with other membranes or stack as in the thylakoid membranes of plant chloroplasts (Figure 6.1). In this last array, they provide the environment for the capture of light energy to drive photosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. A. Fisher and W. Stoeckenius, in: Biophysics (W. Hoppe, W. Lohmann, H. Markl, and H. Zeigler, eds.), pp. 413–425, Springer-Verlag, Berlin (1983).

    Google Scholar 

  2. E. Sackmann, in: Biophysics (W. Hoppe, W. Lohmann, H. Markl, and H. Zeigler, eds.), pp. 425–460, Springer-Verlag, Berlin (1983).

    Google Scholar 

  3. P. Yeagle, The Membranes of Cells, Academic Press (1987).

    Google Scholar 

  4. J. Seelig and A. Seelig, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys., 13, 19–61 (1980).

    CAS  Google Scholar 

  5. D. Chapman, in: Liquid Crystals: Fourth State of Matter, Conference Proceedings, pp. 305–334, Dekker, New York (1979).

    Google Scholar 

  6. J. F. Nagle, Theory of the main lipid bilayer phase transition, Annu. Rev. Phys. Chem., 31, 157–195 (1980).

    CAS  Google Scholar 

  7. M. J. Tanner, Isolation of integral membrane proteins and criteria for identifying carrier proteins, Top. Membranes Transp., 12, 1–51 (1979).

    CAS  Google Scholar 

  8. D. R. Nelson and N. C. Robinson, Membrane proteins: a summary of known structural information, Methods Enzymol., 97, 571–618 (1983).

    CAS  Google Scholar 

  9. G. G. Roberts, Langmuir-Blodgett films, Contemp. Phys., 25, 109–128 (1984).

    CAS  Google Scholar 

  10. G. L. Gaines, Jr., From monolayer to multilayer: some unanswered questions, Thin Solid Films, 68, 1–5 (1980).

    CAS  Google Scholar 

  11. G. L. Gaines, Insoluble Monolayers at Gas-Liquid Interfaces, Interscience, New York (1966).

    Google Scholar 

  12. M. C. Phillips, Physical state of phospholipids and cholesterol in monolayers, bilayers and membranes, Progr. Surf. Membr. Sci., 5, 139–121 (1972).

    CAS  Google Scholar 

  13. S. Ohki and C. B. Ohki, Monolayers at the oil/water interface as a proper model for bilayer membranes, J. Theor. Biol., 62, 389–407 (1976).

    CAS  Google Scholar 

  14. D. Papahadjopoulos, Phospholipids as model membranes. Monolayers, bilayers and vesicles, Biophys. Biochim. Acta Library, 3, 143–169 (1973).

    CAS  Google Scholar 

  15. J. Mingins, N. F. Owens, and D. H. Iles, Properties of monolayers at the air-water interface. 1. The effect of spreading solvent on the surface pressure of octadecyltrimethylammonium bromide, J. Phys. Chem., 73, 2118–2126 (1969).

    CAS  Google Scholar 

  16. D. A. Cadenhead and B. M. Kellner, Monolayer spreading solvents with special reference to phospholipid monolayers, J. Colloid Interface Sci., 49, 143–145 (1974).

    CAS  Google Scholar 

  17. J. Mingins and J. A. G. Taylor, Physicochemical properties of phospholipid monomolecular layers, Proc. R. Soc. Med., 66, 383–385 (1973).

    CAS  Google Scholar 

  18. G. Collacicco, Lipid monolayers: ionic impurities and their influence on the surface potentials of neutral phospholipids, Chem. Phys. Lipids, 10, 66–72 (1973).

    Google Scholar 

  19. S. Sato and H. Kishimoto, The contact angle of phospholipid monolayer on a Wilhelmy plate, J. Colloid Interface Sci., 69, 188–191 (1979).

    CAS  Google Scholar 

  20. H. E. Ries Jr., G. Albrecht and, L. Ter-Minassian-Saraga, Collapsed monolayers of egg lecithin, Langmuir, 1, 135–137 (1985).

    CAS  Google Scholar 

  21. N. L. Gershfeld and K. Tajima, Spontaneous formation of lecithin bilayers at the air-water surface, Nature, 279, 708–709 (1979).

    CAS  Google Scholar 

  22. A. G. Bois and N. Albon, Equilibrium spreading pressure of l-alpha-dipalmitoyl lecithin below the main bilayer transition temperature: can it be measured? J. Colloid Interface Sci., 104, 579–582 (1985).

    CAS  Google Scholar 

  23. M. C. Phillips and H. Hauser, Spreading of solid glycerides and phospholipids at the air-water interface, J. Colloid Interface Sci., 49, 31–39 (1974).

    CAS  Google Scholar 

  24. M. Tomoaia-Cotisel, E. Chifu, A. Sen, and P. J. Quinn, Galactolipid and lecithin monolayers at the air/water interface, Dev. Plant Biol., 8, 393–396 (1982).

    CAS  Google Scholar 

  25. E. M. Arnett, N. Harvey, E. A. Johnson, D. S. Johnston, and D. Chapman, No phospholipid monolayer-sugar interactions, Biochemistry, 25, 5239–5242 (1986).

    CAS  Google Scholar 

  26. J. Mingins, E. Llerenas, and B. A. Pethica, The role of interfacial charges in the phase behaviour of lipid monolayers and bilayers, Colston Papers No.29 (D. H. Everett and Vincent, eds.), pp. 41–68, Scientechnica (1978).

    Google Scholar 

  27. S. Ohki, C. B. Ohki, and N. Duzgunes, Monolayer at the air/water interface vs. oil/water interface as a bilayer membrane model, Colloid Interface Science (Proc. International Conf.), 5, 271–284 (1976).

    CAS  Google Scholar 

  28. M. C. Phillips, H. Hauser, and F. Paltauf, The inter- and intra-molecular mixing of hydrocarbon chains in lecithin/water systems, Chem. Phys. Lipids, 8, 127–133 (1972).

    CAS  Google Scholar 

  29. E.G. Finer and M. C. Phillips, Factors affecting molecular packing in mixed lipid monolayers and bilayers, Chem. Phys. Lipids, 10, 237–252 (1973).

    CAS  Google Scholar 

  30. R. A. Demel, K. R. Bruckdorfer, and L. L. M. Van Deenen, Structural requirements of sterols for the interaction with lecithin at the air-water interface, Biochim. Biophys. Acta, 225, 311–320 (1972).

    Google Scholar 

  31. D. A. Cadenhead, B. M. J. Kellner, and M. C. Phillips, The miscibility of dipalmitoyl phosphatidylcholine and cholesterol in monolayers, J. Colloid Interface Sci., 57, 224–227 (1976).

    CAS  Google Scholar 

  32. J. A. G. Taylor, J. Mingins, B. A. Pethica, Beatrice Y. J. Tan, and C. M. Jackson, Phase changes and mosaic formation in single and mixed phospholipid monolayers at the oil-water interface, Biochim. Biophys. Acta, 323, 157–160 (1973).

    CAS  Google Scholar 

  33. J. Teissie, J. F. Tocanne, and A. Baudras, Phase transitions in phospholipid monolayers at the air-water interface: a fluorescence study, FEBS Lett., 70, 123–126 (1976).

    CAS  Google Scholar 

  34. V. Von Tscharner and H. M. McConnell, An alternative view of phospholipid phase behaviour at the air-water interface. Microscope and film balance studies, Biophys. J., 36, 409–419 (1981).

    Google Scholar 

  35. V. Von Tscharner and H. M. McConnell, Physical properties of lipid monolayers on alkylated planar glass surfaces, Biophys. J., 36, 421–427 (1981).

    Google Scholar 

  36. M. Lösche, J. Rabe, B. Fischer, U. Rucha, W. Knoll, and H. Möhwald, Microscopically observed preparation of Langmuir-Blodgett Films, Thin Solid Films, 117, 269–280 (1984).

    Google Scholar 

  37. R. M. Weis and H. M. McConnell, Two dimensional chiral crystals of phospholipid, Nature, 310, 47–49 (1984).

    CAS  Google Scholar 

  38. E. M. Arnett and J. M. Gold, Chiral aggregation phenomena. 4. A search for stereospecific interactions between highly purified enantiomeric and racemic dipalmitoyl phosphatidylcholines and other chiral surfactants in monolayers, vesicles and gels, J. Am. Chem. Soc., 104, 636–639 (1982).

    CAS  Google Scholar 

  39. R. Subramanian and L. K. Paterson, Paper presented at the Second International Conference on Langmuir-Blodgett Films, Schenectady, NY, U.S.A., July 1–4 (1985).

    Google Scholar 

  40. M. C. Phillips, The conformation and properties of proteins at liquid interfaces, Chem. Ind., 170–176 (1977).

    Google Scholar 

  41. L. K. James and L. G. Augenstein, Adsorption of enzymes at interfaces: film formation and the effect on activity, Adv. Enzymol., 28, 1–40 (1966).

    CAS  Google Scholar 

  42. P. Fromherz, A new technique for investigating lipid protein films, Biochim. Biophys. Acta, 225, 382–387 (1971).

    CAS  Google Scholar 

  43. M. C. Phillips, H. Hauser, R. B. Leslie, and D. Oldani, Comparison of the interfacial interactions of the apoprotein from high density lipoprotein and beta-casein with phospholipids, Biochim. Biophys. Acta, 406, 402–414 (1975).

    CAS  Google Scholar 

  44. M. C. Phillips, D. E. Graham, and H. Hauser, Lateral compressibility and penetration into phospholipid and bilayer membranes, Nature, 254, 154–156 (1975).

    CAS  Google Scholar 

  45. M. C. Phillips, M. T. A. Evans, and H. Hauser, Interaction of proteins with phospholipid monolayers, Adv. Chem. Ser. 144 (Monolayers Membr. Syn.), 217–230 (1975).

    CAS  Google Scholar 

  46. D. G. Cornell and R. J. Carroll, Miscibility in lipid-protein monolayers, J. Colloid Interface Sci., 108, 226–233 (1985).

    CAS  Google Scholar 

  47. J. Teissie, Interaction of cytochrome c with phospholipid monolayers. Orientation and penetration of protein as functions of the packing density of film, nature of the phospholipids and ionic content of the aqueous phase, Biochemistry, 20, 1554–1560 (1981).

    CAS  Google Scholar 

  48. P. M. Vassilev, S. Taneva, I. Panaiotov, and G. Georgiev, Dilational viscoelastic properties of tubulin and mixed tubulin-lipid monolayers, J. Colloid Interface Sci., 84, 169–174 (1981).

    Google Scholar 

  49. D. E. Graham and M. C. Phillips, Proteins at liquid interfaces. 4. Dilatational properties, J. Colloid Interface Sci., 76, 227–239 (1980).

    CAS  Google Scholar 

  50. D. E. Graham and M. C. Phillips, Proteins at liquid interfaces. 5. Shear properties, J. Colloid Interface Sci., 76, 240–250 (1980).

    CAS  Google Scholar 

  51. R. Verger and F. Partus, Spreading of membranes at the air/water interface, Chem. Phys. Lipids, 16, 285–291 (1976).

    CAS  Google Scholar 

  52. T. Kanno, M. Setaka, T. Hongo, and T. Kwan, Spontaneous formation of a monolayer membrane from sarcoplasmic reticulum at an air-water interface, J. Biochem. (Tokyo), 94, 473–477 (1983).

    CAS  Google Scholar 

  53. H. Schindler, Exchange and interactions between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta, 555, 316–336 (1979).

    CAS  Google Scholar 

  54. F. Jähnig, Lipid exchange between membranes, Biophys, J., 46, 687–694 (1984).

    Google Scholar 

  55. D. G. Cornell and R. J. Carroll, Electron microscopy of lipid-protein monolayers, Colloids Surf., 6, 385–393 (1983).

    CAS  Google Scholar 

  56. T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda, Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes, J. Am. Chem. Soc., 100, 6657–6665 (1978).

    CAS  Google Scholar 

  57. T. Watanabe, T. Miyasaka, A. Fujishima, and K. Honda, Photoelectrochemical study of chlorophyll monolayer electrodes, Chem. Lett., 443–446 (1978).

    Google Scholar 

  58. T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda, Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes, Nature, 277, 638–640 (1979).

    CAS  Google Scholar 

  59. J-G. Villar, Etude des effets photoélectrochimiques de films multimoléculaires de chlorophylle a formés sur une électrode de platine semi-transparante, C.R. Acad. Sci. Paris, Ser. D., 275, 861 – 864 (1972).

    CAS  Google Scholar 

  60. R. Jones, R. H. Tredgold, and P. Hodge, Langmuir-Blodgett films of simple esterified porphyrins, Thin Solid Films, 99, 25–32 (1983).

    CAS  Google Scholar 

  61. J-P. Chauvet, M. L. Agrawal, G. L. Hug, and L. K. Patterson, Effects of molecular organization on photophysical behaviour: steady-state and real-time behaviour of chlorophyll b fluorescence in spread monolayers of dioleoylphosphatidylcholine, Thin Solid Films, 133, 227–234 (1985).

    CAS  Google Scholar 

  62. D. Ducharme, C. Salesse, and R. M. Leblanc, Ellipsometric studies of rod outer segment phospholipids at the nitrogen-water interface, Thin Solid Films, 132, 83–90 (1985).

    CAS  Google Scholar 

  63. J. F. Baret, H. Hasmonay, J. L. Firpo, J. J. Dupin, and M. Dupeyrat, The different types of isotherm exhibited by insoluble fatty acid monolayers. A theoretical interpretation of phase transitions in the condensed state, Chem. Phys. Lipids, 30, 177–187 (1982).

    CAS  Google Scholar 

  64. A. I. Feher, F. D. Collins, and T. W. Healy, Mixed monolayers of simple saturated and unsaturated fatty acids, Aust. J. Chem., 30, 511–519 (1977).

    CAS  Google Scholar 

  65. B. Hupfer and H. Ringsdorf, Spreading and polymerization behaviour of diacetylene phospholipids at the gas-water interface, Chem. Phys. Lipids, 33, 263–282 (1983).

    CAS  Google Scholar 

  66. D. S. Johnston, L. R. McLean, M. A. Whittam, A. D. Clark, and D. Chapman, Spectra and physical properties of liposomes and monolayers of polymerizable phospholipids containing diacetylene groups in one or both chains, Biochemistry, 22, 3194–3202 (1983).

    CAS  Google Scholar 

  67. R. Büschl, B. Hupfer, and H. Ringsdorf, Polyreactions in oriented systems. 30. Mixed monolayers and liposomes from natural and polymerizable lipids, Macromol. Chem. Rapid Commun., 3, 589–596 (1982).

    Google Scholar 

  68. B. Tieke, V. Enkelmann, H. Kapp, G. Lieser, and G. Wegner, Topochemical reactions in Langmuir-Blodgett multilayers, J. Macromol. Sci., Chemistry A, 15, 1045–1058 (1981).

    Google Scholar 

  69. D. R. Day, H. Ringsdorf, and J. B. Lando, Polymerization of surface active diacetylene monomers at the gas-water interface, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 19, 176–178 (1978).

    CAS  Google Scholar 

  70. V. Martin, H. Ringsdorf, and D. Thunig, Polymerization of micelle forming monomers, Midl. Macromol. Monogr., 3, 175–188 (1977).

    CAS  Google Scholar 

  71. T. Kunitake and Y. Okahata, Bilayer membranes prepared from modified dialkylammonium salts and methyldialkylsulphonium salts, Chem. Lett., 1337–1340 (1977).

    Google Scholar 

  72. N. Nakashima, R. Ando, and T. Kunitake, Casting of synthetic bilayer membranes on glass and spectral variation of membrane-bound cyanine and merocyanine dyes, Chem. Lett., 1577–1580 (1983).

    Google Scholar 

  73. E. P. Honig, Th. J. H. Hengst, and D. den Engelsen, Langmuir-Blodgett deposition ratios, J. Colloid Interface Sci., 45, 92–102 (1973).

    CAS  Google Scholar 

  74. H. Hasmonay, M. Caillaud, and M. Dupeyrat, Langmuir-Blodgett multilayers of phosphatidic acid and mixed phospholipids, Biochim. Biophys. Res. Commun., 89, 338–344 (1979).

    CAS  Google Scholar 

  75. G. L. Gaines Jr., Interface curvature corrections for film balance measurements, J. Colloid Interface Sci., 98, 272–273 (1984).

    CAS  Google Scholar 

  76. J. P. Green, M. C. Phillips, and G. G. Shipley, Structural investigations of lipid, polypeptide and protein multilayers, Biochim. Biophys. Acta, 330, 243–253 (1973).

    CAS  Google Scholar 

  77. O. Albrecht, D. S. Johnston, C. Villaverde, and D. Chapman, Stable biomembrane surfaces formed by phospholipid polymers, Biochim. Biophys, Acta, 687, 165–169 (1982).

    CAS  Google Scholar 

  78. I. V. Langmuir and V. J. Schaefer, Activities of urease and pepsin monolayers, J. Am. Chem. Soc., 60, 1351–1360 (1938).

    CAS  Google Scholar 

  79. L. K. Tarnm and H. M. McConnell, Supported phospholipid bilayers, Biophys, J., 47, 105–113 (1985).

    Google Scholar 

  80. M. F. Daniel, O. C. Lettington, and S. M. Small, Langmuir-Blodgett films of amphiphiles with cyano headgroups, Mol. Cryst. Liq. Cryst., 96, 373–385 (1983).

    CAS  Google Scholar 

  81. M. Lösche, C. Helm, H. D. Mattes, and H. Möhwald, Formation of Langmuir-Blodgett films via electrostatic control of the lipid/water interface, Thin Solid Films, 133, 51–64 (1985).

    Google Scholar 

  82. E. P. Honig, Molecular constitution of X- and Y-type Langmuir-Blodgett films, J. Colloid Interface Sci., 43,66–72(1973).

    Google Scholar 

  83. K. Fukuda and T. Shiozawa, Conditions for formation and structural characterization of X-type and Y-type multilayers of long-chain esters, Thin Solid Films, 68, 55–66 (1980).

    CAS  Google Scholar 

  84. M. Saint-Pierre and M. Dupeyrat, Measurement and meaning of the transfer process energy in the building up of Langmuir-Blodgett multilayers, Thin Solid Films, 99, 205–213 (1983).

    CAS  Google Scholar 

  85. I. R. Peterson, G. J. Russell, and G. G. Roberts, A new model for the deposition of omega-tricosenoic acid Langmuir-Blodgett film layers, Thin Solid Films, 109, 371–378 (1983).

    CAS  Google Scholar 

  86. B. L. Eyres and R. M. Swart, unpublished results.

    Google Scholar 

  87. B. Hupfer and H. Ringsdorf, Polymeric monolayers and liposomes as models for biomembranes and cells, ACS Symp. Ser., 175 (Polym. Sci. Overview), 209–232 (1981).

    CAS  Google Scholar 

  88. D. S. Johnston, S. Sanghera, A. Manjon-Rubio, and D. Chapman, The formation of polymeric model biomembranes from diacetylenic fatty acids and phospholipids, Biochim. Biophys. Acta, 602, 213–216 (1980).

    CAS  Google Scholar 

  89. L. R. McLean, A. A. Durrani, M. A. Whittam, D. S. Johnston, and D. Chapman, Preparation of stable polar surfaces using polymerizable long-chain diacetylenic molecules, Thin Solid Films, 99, 127–131 (1983).

    CAS  Google Scholar 

  90. R. Elbert, A. Laschewsky, and H. Ringsdorf, Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids, J. Am. Chem. Soc., 107, 4134–4141 (1985).

    CAS  Google Scholar 

  91. S. A. Asher and P. S. Pershan, Alignment and defect structures in oriented phosphatidycholine multilayers, Biophys. J., 27, 393–422 (1979).

    CAS  Google Scholar 

  92. L. Powers and N. A. Clark, Preparation of large monodomain phospholipid bilayer smectic liquid crystals, Proc. Natl. Acad. Sci. U.S.A., 72, 840–843 (1975).

    CAS  Google Scholar 

  93. L. Powers, J. P. LePesant, and P. S. Pershan, Optical studies of monodomain phospholipid bilayers, Biophys. J., 16, 138a (1976), abstract.

    Google Scholar 

  94. L. Powers and P. S. Pershan, Optical studies of monodomain phospholipid bilayers containing various biological membrane components, Biophys, J., 16, 138a (1976), abstract.

    Google Scholar 

  95. L. Huang and H. M. McConnell, Formation of lipid multilayer on alkylated glass surface, Biophys, J., 41, 115a (1983), abstract.

    Google Scholar 

  96. W. L. Peticolas, M. Harrand and R. Dupeyrat, Polarized Raman spectra of oriented monodomains of phospholipid monolayers, J. Raman Spectrosc., 12, 130–132 (1982).

    CAS  Google Scholar 

  97. B. P. Gaber and W. L. Peticolas, On the quantitative interpretation of biomembrane structure by Raman spectroscopy, Biochim. Biophys. Acta, 465, 260–274 (1977).

    CAS  Google Scholar 

  98. E. Bicknell-Brown, K. G. Brown, and W. B. Person, Conformation dependent Raman bands of phospholipid surfaces, J. Raman Spectrosc., 12, 180–189 (1982).

    CAS  Google Scholar 

  99. M. Harrand, Polarized Raman spectra of oriented dipalmitoylphosphatidylcholine (DPPC). 1. Scattering activities of skeletal stretching and methylene vibrations of hydrocarbon chains, J. Chem. Phys., 79, 5639–5651 (1983).

    CAS  Google Scholar 

  100. M. J. M. Van de Ven and Y. K. Levine, Angle-resolved fluorescence depolarization of mac-roscopically ordered bilayers of unsaturated lipids, Biochim. Biophys. Acta, 111, 283–296 (1984).

    Google Scholar 

  101. C. S. Winter and R. H. Tredgold, Langmuir-Blodgett multilayers of polypeptides, Thin Solid Films, 123, L1–L3 (1985).

    CAS  Google Scholar 

  102. T. Furuno, H. Sasabe, R. Nagata, and T. Akaike, Studies of Langmuir-Blodgett films of poly(l-benzyl-l-histidine) stearic acid mixtures, Thin Solid Films, 133, 141–152 (1985).

    CAS  Google Scholar 

  103. W. MacNaughton, K. A. Snook, E. Caspi, and N. P. Franks, An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins, Biochim. Biophys. Acta, 818, 132–148 (1985).

    Google Scholar 

  104. H. Schindler and U. Quast, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A., 77, 3052–3056 (1980).

    CAS  Google Scholar 

  105. N. Nelson, R. Anholt, J. Lindstrom, and M. Montai, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A., 77, 3057–3061 (1980).

    CAS  Google Scholar 

  106. S. B. Hwang, J. I. Korenbrot, and W. Stoeckenius, Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films, J. Membr. Biol., 36, 115–136 (1977).

    CAS  Google Scholar 

  107. J. R. Brocklehurst and M. T. Flanagan, Multilayer models of photosynthetic membranes, Comm. Eur. Communities Report (EUR 7688), 1–135 (1982).

    Google Scholar 

  108. M. T. Flanagan, The deposition of Langmuir-Blodgett films containing purple membrane on lipid and paraffin impregnated filters, Thin Solid Films, 99, 133–138 (1983).

    CAS  Google Scholar 

  109. J. Schildkraut and A. Lewis, Purple membrane and purple membrane-phospholipid Langmuir-Blodgett films, Thin Solid Films, 134, 13–26 (1985).

    CAS  Google Scholar 

  110. W. M. Heckl, M. Lösche, and H. Möhwald, Langmuir-Blodgett films containing proteins of the photosynthetic process, Thin Solid Films, 133, 73–81 (1985).

    CAS  Google Scholar 

  111. S. M. de B. Costa, J. R. Froines, J. M. Harris, R. M. Leblanc, B. H. Orger, and G. Porter, Model systems for photosynthesis. 3. Primary photo-processes of chloroplast pigments in monomolecular arrays at solid surfaces, Proc. R. Soc. London, Ser. A., 326, 503–519 (1972).

    CAS  Google Scholar 

  112. K. Iriyama, Methods for preparing chlorophyll a multilayers on glass plates, Photochem. Pho-tobiol., 29, 633–636 (1979).

    CAS  Google Scholar 

  113. K. Iriyama, M. Yoshiura, and F. Mizutani, Deposition of chlorophyll a Langmuir-Blodgett films onto a SnO2 optically transparent electrode, Thin Solid Films, 68, 47–54 (1980).

    CAS  Google Scholar 

  114. K. Iriyama, Preparation of multilayers containing chlorophyll a and/or phosphatidylcholine and the chemical stability of chlorophyll a molecules in the multilayers, J. Membr. Biol., 52, 115–120 (1980).

    CAS  Google Scholar 

  115. A. Ruaudel-Teixier, A. Barraud, B. Belbeoch, and M. Roulliay, Langmuir-Blodgett films of pure porphyrins, Thin Solid Films, 99, 33–40 (1983).

    CAS  Google Scholar 

  116. J. B. Hasted, A. K. Ko, Y. Al-Baker, S. Kadifachi, and D. Rosen, Electrical transport in haemoglobin Langmuir-Blodgett films, J. Chem. Soc., Faraday Trans., 81, 463–472 (1985).

    CAS  Google Scholar 

  117. C. N. Kossi and R. M. Leblanc, Rhodopsin in a new model bilayer membrane, J. Colloid Interface Sci., 80, 426–436 (1981).

    CAS  Google Scholar 

  118. H. Kuhn, Functionalized monolayer assembly manipulation, Thin Solid Films, 99, 1–16 (1983).

    CAS  Google Scholar 

  119. H. Kuhn, Synthetic molecular organizates, J. Photochem., 10, 111–132 (1979).

    CAS  Google Scholar 

  120. H. Kuhn and D. Möbius, Systems of monomolecular layers. Assembly and physico-chemical behaviour, Angew, Chem., Int. Ed. Engl., 10, 620–637 (1971).

    CAS  Google Scholar 

  121. H. Kuhn, D. Möbius, and H. Bücher, in: Physical Methods of Chemistry (A. Weissberger and B. W. Rossiter, eds.), Part 3B, pp. 577–702, Wiley-Interscience, New York (1972).

    Google Scholar 

  122. M. H. Vos, R. P. H. Kooyman, and Y. K. Levine, Angle resolved fluorescence depolarisation experiments on oriented lipid membrane systems, Biochem. Biophys. Res. Commun., 116, 462–468 (1983).

    CAS  Google Scholar 

  123. L. Powers and P. S. Pershan, Monodomain samples of dipalmitoyl phosphatidylcholine with varying concentrations of water and other ingredients, Biophys. J., 20, 137–152 (1977).

    CAS  Google Scholar 

  124. P. K. J. Kinnunen, J. A. Virtanen, A. P. Tulkki, R. C. Ahiya, and D. Möbius, Pyrene-fatty acid-containing phospholipid analogues: characterisation of monolayers and Langmuir-Blodgett assemblies, Thin Solid Films, 132, 193–203 (1985).

    CAS  Google Scholar 

  125. M. Seul, P. Eisenburger, and H. McConnell, X-ray diffraction by phospholipid monolayers on single-crystal surfaces, Proc. Natl. Acad. Sci. U.S.A., 80, 5795–5797 (1983).

    CAS  Google Scholar 

  126. J. B. Stamatoff, W. F. Graddick, L. Powers, and D. E. Moncton, Direct observation of the hydrocarbon chain tilt angle in phospholipid bilayers, Biophys. J., 25, 253–261 (1979).

    CAS  Google Scholar 

  127. M. Hentschel and R. Hoseman, Small and wide angle X-ray scattering of oriented lecithin multilayers, Mol. Cryst. Liq. Cryst., 94, 291–316 (1983).

    CAS  Google Scholar 

  128. S. W. Hui, M. Cowden, D. Papahadjopoulos, and D. F. Parsons, Electron diffraction study of hydrated phospholipid single bilayers. Effects of temperature, hydration and surface pressure of the “precursor” monolayer, Biochim. Biophys, Acta, 382, 265–275 (1975).

    CAS  Google Scholar 

  129. G. Eyring and M. D. Fayer, A laser-induced ultrasonic probe of the mechanical properties of aligned lipid multilayers, Biophys. J., 47, 37–42 (1985).

    CAS  Google Scholar 

  130. L. J. Lis, S. C. Goheen, and J. W. Kauffman, Raman spectroscopy of fatty acid Blodgett-Langmuir multilayer assemblies, Biochem. Biophys, Res. Commun., 78, 492–497 (1977).

    CAS  Google Scholar 

  131. M. Delhaye, M. Dupeyrat, R. Dupeyrat, and Y. Lévy, An improvement in the Raman spectroscopy of very thin films, J. Raman Spectrosc, 8, 351–352 (1979).

    CAS  Google Scholar 

  132. A. Aurengo, M. Masson, R. Dupeyrat, Y. Lévy, H. Hasmonay, and J. Barbillot, Technical device for obtaining Raman spectra of ultrathin films of phospholipids, Biochem. Biophys, Res. Commun., 82, 559–564(1979).

    Google Scholar 

  133. R. Dupeyrat and M. Masson, in: Microbeam Analysis (K. F. J. Heinrich, ed.), pp. 286–288, San Francisco Press (1982).

    Google Scholar 

  134. M. Vandevyver, A. Ruaudel-Teixier, L. Brehamet, and M. Lutz, Polarized resonance Raman spectroscopy of Langmuir-Blodgett films, Thin Solid Films, 99, 41–44 (1983).

    CAS  Google Scholar 

  135. R. A. Uphaus, T. M. Cotton, and D. Möbius, Surface-enhanced resonance Raman spectroscopy of synthetic dyes and photosynthetic pigments in monolayer and multilayer assemblies, Thin Solid Films, 132, 173–184 (1985).

    CAS  Google Scholar 

  136. F. Kopp, U. P. Fringeli, K. Miihlethaler, and H. Hs. Güthard, Spontaneous rearrangement in Langmuir-Blodgett layers of tripalmitin studied by means of ATR infrared spectroscopy and electron microscopy, Z. Naturforsch., 30c, 711–717 (1975).

    Google Scholar 

  137. E. Okamura, J. Umemura, and T. Takenaka, Fourier transform infrared attenuated total reflection spectra of dipalmitoyphosphatidylcholine monomolecular films, Biochim. Biophys. Acta, 812, 139–146 (1985).

    CAS  Google Scholar 

  138. P. Fromherz, A new method for investigation of lipid assemblies with a lipid pH indicator in monomolecular films, Biochim. Biophys. Acta, 323, 326–334 (1973).

    CAS  Google Scholar 

  139. A. Mellier, O. Auge, and P. Crouigneau, Molecular interactions at the phospholipid-water interface. Infrared spectrum of dimyristoyl-l-alpha-lecithin adsorbed on hydrated potassium bromide, Colloids Surf., 7, 325–337 (1983).

    CAS  Google Scholar 

  140. D. G. Hafeman, V. van Tscharner, and H. M. McConnell, Specific antibody dependent interactions between macrophages and lipid haptens in planar lipid monolayers, Proc. Natl. Acad. Sci. U.S.A., 78, 4552–4556 (1981).

    CAS  Google Scholar 

  141. G. M. Humphries and H. M. McConnell, Antibodies against spin labels, Biophys. J., 16, 275–277 (1976).

    CAS  Google Scholar 

  142. J. Marra and J. N. Israelachvili, Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions, Biochemistry, 24, 4608–4618 (1985).

    CAS  Google Scholar 

  143. J. Marra, Controlled deposition of lipid monolayers and bilayers onto mica and direct force measurements between galactolipid bilayers in aqueous solutions, J. Colloid Interface Sci., 107, 446–458 (1985).

    CAS  Google Scholar 

  144. N. L. Thompson, H. M. McConnell, and T. P. Burghardt, Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited polarised evanescent radiation, Biophys, J., 46, 739–747 (1984).

    CAS  Google Scholar 

  145. M. Masson and R. Dupeyrat, in: Microbeam Analysis (K. F. J. Heinrich, ed.), pp. 289–293, San Francisco Press (1982).

    Google Scholar 

  146. N. P. Franks and W. R. Lieb, Rapid movement of molecules across membranes. Measurement of the permeability coefficient of water using neutron diffraction, J. Mol. Biol., 141, 43–61 (1980).

    CAS  Google Scholar 

  147. N. P. Franks and W. R. Lieb, Where do general anaesthetics act? Nature, 274, 339–342 (1978).

    CAS  Google Scholar 

  148. N. P. Franks and W. R. Lieb, The structure of lipid bilayers and the effects of general anaesthetics. An X-ray and neutron diffraction study, J. Mol. Biol, 133, 469–500 (1979).

    CAS  Google Scholar 

  149. R. J. Vanderveen and G. T. Barnes, Water permeation through Langmuir-Blodgett monolayers, Thin Solid Films, 134, 227–236 (1985).

    CAS  Google Scholar 

  150. P. Fromherz and D. Marcheva, Enzyme kinetics at a lipid protein monolayer, induced substrate inhibition of trypsin, FEBS Lett., 49, 329–333 (1975).

    CAS  Google Scholar 

  151. J. Peters and P. Fromherz, Interaction of electrically charged monolayers with malate dehydrogenase, Biochim. Biophys. Acta, 394, 111–119 (1975).

    CAS  Google Scholar 

  152. N. L. Thompson, A.A. Brian, and H. M. McConnell, Covalent linkage of a synthetic peptide to a fluorescent phospholipid and its incorporation into supported phospholipid monolayers, Biochim. Biophys. Acta, 772, 10–19 (1984).

    CAS  Google Scholar 

  153. J. L. R. Rubenstein, B. A. Smith, and H. M. McConnell, Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines, Proc. Natl. Acad. Sci. U.S.A., 76, 15–18 (1979).

    CAS  Google Scholar 

  154. K. Fukuda, Y. Shibasaki, and H. Nakahara, Molecular arrangement and polymerizability of amino-acid derivatives and dienoic acid in Langmuir-Blodgett films, Thin Solid Films, 133, 39–49 (1985).

    CAS  Google Scholar 

  155. H. Tschesche, in: Biophysics (W. Hoppe, W. Lohmann, H. Markl, and H. Zeigler, eds.), pp. 20–41, Springer-Verlag, Berlin (1983).

    Google Scholar 

  156. S. M. de B. Costa and G. Porter, Model systems for photosynthesis. 4. Photosensitization by chlorophyll a monolayers at a lipid/water interface, Proc. R. Soc. London, Ser. A. 341, 167–176 (1974).

    CAS  Google Scholar 

  157. R. Leblanc, Optical properties of biological pigments in monolayer and multilayer arrays, Thin Solid Films, 99, 140 (1983), abstract.

    Google Scholar 

  158. A. Désormeaux and R. M. Leblanc, Electronic and photoacoustic spectroscopies of chlorophyll a in monolayer and multilayer arrays, Thin Solid Films, 132, 91–99 (1985).

    Google Scholar 

  159. J-G. Villar, Photoelectrochemical effects in the electrolyte-pigment-metal system. 3. Chlorophyll films short-circuit photocurrent transients light energy conversion efficiency, J. Bioenerg. Bio-membr., 8, 199–208 (1976).

    CAS  Google Scholar 

  160. A. F. Janzen and J. R. Bolton, Photochemical electron transfer in monolayer assemblies. 2. Photoelectric behaviour in chlorophyll a-acceptor systems, J. Am. Chem. Soc., 101, 6342–6348 (1979).

    CAS  Google Scholar 

  161. R. Jones, R. H. Tredgold, and J. E. O’Mullane, Photoconductivity and photovoltaic effects in Langmuir-Blodgett films of chlorophyll a, Photochem. Photobiol., 32, 223–232 (1980).

    CAS  Google Scholar 

  162. K. J. McCree, Photoconduction and photosynthesis. 1. The photoconductivity of chlorophyll monolayers, Biochim. Biophys. Acta, 102, 90–95 (1965).

    CAS  Google Scholar 

  163. R. H. Tredgold and G. W. Smith, Surface potential studies on Langmuir-Blodgett multilayers and adsorbed monolayers, Thin Solid Films, 99, 215–220 (1983).

    CAS  Google Scholar 

  164. W. L. Procarione and J. W. Kauffman, The electrical properties of phospholipid bilayer Langmuir films, Chem. Phys. Lipids, 12, 251–260 (1974).

    CAS  Google Scholar 

  165. D. M. Taylor and M. G. B. Mahboubian-Jones, Steady state conduction in synthetic phospholipid films, Thin Solid Films, 99, 149–156 (1983).

    CAS  Google Scholar 

  166. M. G. B. Mahboubian-Jones and D. M. Taylor, Electrical properties of thin biological films grown by the Langmuir-Blodgett technique, J. Electrostat., 13, 1–8 (1982).

    CAS  Google Scholar 

  167. D. M. Taylor and M. G. B. Mahboubian-Jones, The electrical properties of synthetic phospholipid Langmuir-Blodgett films, Thin Solid Films, 87, 167–179 (1982).

    CAS  Google Scholar 

  168. H. Kuhn, Electron tunneling effect in monolayer assemblies, Chem. Phys. Lipids, 8, 401–404 (1972).

    CAS  Google Scholar 

  169. P. J. Bowen and T. J. Lewis, Electrical interactions in phospholipid layers, Thin Solid Films, 99, 157–163 (1983).

    CAS  Google Scholar 

  170. A. Y. Ko, D. Rosen, and J. B. Hasted, Dielectric properties of Langmuir-Blodgett films of haemoglobin, Proc. First Int. Conf. Conduct. & Breakdown of Solid Dielectrics, pp. 175–179 (1983).

    Google Scholar 

  171. H. Gaub, E. Sackmann, R. Büschl, and H. Ringsdorf, Lateral diffusion and phase separation in two dimensional solutions of polymerized butadiene lipid in dimyristoylphosphatidylcholine bilayers. A photobleaching and freeze fracture study, Biophys. J., 45, 725–731 (1984).

    CAS  Google Scholar 

  172. J. Barber, Influence of surface charges on thylakoid structure and function, Annu. Rev. Plant Physiol., 33, 261–295 (1982).

    CAS  Google Scholar 

  173. A. Arya, U. J. Krull, Michael Thompson, and H. E. Wong, Langmuir-Blodgett deposition of lipid films on hydrogel as a basis for biosensor development, Anal. Chim. Acta, 173, 331–336 (1985).

    CAS  Google Scholar 

  174. N. L. Gershfeld, W. F. Stevens, Jr., and R. J. Nossal, Equilibrium studies of phospholipid bilayer assembly, Faraday Discuss. Chem. Soc., 81, 19–28 (1986).

    CAS  Google Scholar 

  175. B. Maggio, F. A. Cumar, and R. Caputto, Molecular behaviour of glycosphingolipids in interfaces. Possible participation in some nerve membranes, Biochim. Biophys. Acta., 650, 69–87 (1981).

    CAS  Google Scholar 

  176. J. H. Crowe, L. M. Crowe, J. F. Carpenter, A. S. Rudolf, C. A. Wistrom, B. J. Spargo, and T. J. Anchordoguy, Interactions of sugars with membranes, Biochim. Biophys. Acta., 947, 367–384 (1988).

    CAS  Google Scholar 

  177. R. A. Demol and B. DeKruyff, The function of sterols in membranes, Biochim. Biophys. Acta., 457, 109–132 (1976).

    Google Scholar 

  178. M. Lösche, H-P. Duwe, and H. Möhwald, Quantitative analysis of surface textures in phospholipid monolayer phase transitions, J. Colloid Interface Sci., 126, 432–444 (1988).

    Google Scholar 

  179. C. A. Helm, H. Möhwald, K. Kjaer, and J. Als-Nielsen, Phospholipid monolayers between fluid and solid states, Biophys, J., 52, 381–390 (1987).

    CAS  Google Scholar 

  180. C. Salesse, D. Ducharme, and R. M. Leblanc, Direct evidence for the formation of a monolayer from a bilayer—An ellipsometric study at the nitrogen-water interface, Biophys. J. 52, 351–352 (1987).

    CAS  Google Scholar 

  181. H. Nakahara, K. Fukuda, H. Akutsu, and Y. Kyogoku, Monolayers and multilayers of phos-phatidylethanolamine: effects of spreading solvent, monovalent cations and substrate pH, J. Colloid Interface Sci., 65, 517–526 (1978).

    CAS  Google Scholar 

  182. H. M. McConnell, T. H. Watts, R. M. Weiss, and A. A. Brian, Supported planar membranes in studies of cell-cell recognition in the immune system, Biochim. Biophys. Acta., 864, 95–106 (1986).

    CAS  Google Scholar 

  183. E. P. Honig, The transition from Y- to X- type Langmuir-Blodgett films, Langmuir, 5, 882–883 (1989).

    CAS  Google Scholar 

  184. T. H. Watts and H. M. McConnell, in: Processing and Presentation of Antigens (B. Pernis, S. C. Silverstein and H. J. Vogel, eds.), pp. 143–155, Academic Press (1988).

    Google Scholar 

  185. D. Axelrod, T. P. Burghardt, and N. L. Thompson, Total internal reflection fluorescence, Ann. Rev. Biophys. Bioeng., 13, 247–268 (1984).

    CAS  Google Scholar 

  186. H. Möhwald, Direct characterization of monolayers at the air-water interface, Thin Solid Films, 159, 1–15 (1988).

    Google Scholar 

  187. K. Kjaer, J. Als-Nielsen, C. A. Helm, P. Tippmann-Krayer, and H. Möhwald, An X-ray scattering study of lipid monolayers at the air-water interface and on solid supports, Thin Solid Films, 159, 17–28 (1988).

    CAS  Google Scholar 

  188. N. R. Pallas and B. A. Pethica, Liquid-expanded to liquid-condensed transitions in lipid monolayers at the air-water interface, Langmuir, 1, 509–513 (1985).

    CAS  Google Scholar 

  189. R. S. Cantor and K. A. Dill, Theory for the equation of state of phospholipid monolayers, Langmuir, 2, 331–337 (1986).

    CAS  Google Scholar 

  190. D. Stigter and K. A. Dill, Lateral interactions among phospholipid head groups at the heptane/water interface, Langmuir, 4, 200–209 (1988).

    CAS  Google Scholar 

  191. J. A. Poulis, A. A. H. Boonman, P. Gieles, and C. H. Massen, Influence of clustering on the behavior of insoluble monolayers on water: a theoretical approach, Langmuir, 3, 725–729 (1987).

    CAS  Google Scholar 

  192. B. B. Sauer, Y-L. Chen, G. Zografi, and H. Yu, Surface light-scattering studies of dipalmitoyl phosphatidylcholine monolayers at the air/water and heptane/water interfaces, Langmuir, 4, 111–117 (1988).

    CAS  Google Scholar 

  193. B. M. Abraham and J. B. Ketterson, Dipalmitoyllecithin monoalyers at the air/water interface: measurements of the response to shear as a function of surface density and pH, Langmuir, 1, 708–713 (1985).

    CAS  Google Scholar 

  194. B. M. Abraham and J. B. Ketterson, Viscoelastic measurements at the air/water interface on monolayers of dimyristoylphosphatidylserine (DMPS) and of bovine brain phosphatidylserine (BBPS), Langmuir, 2, 801–805 (1986).

    CAS  Google Scholar 

  195. W. M. Heckl, A. Miller, and H. Möhwald, Electric-field induced domain movement in phospholipid monolayers, Thin Solid Films, 159, 125–132 (1988).

    CAS  Google Scholar 

  196. V. Vogel and D. Möbius, Hydrated polar groups in lipid monolayers: effective local dipole moments and dielectric properties, Thin Solid Films, 159, 73–81 (1988).

    CAS  Google Scholar 

  197. W. M. Heckl, H. Baumgärtner, and H. Möhwald, Lateral surface potential distribution of a phospholipid monolayer, Thin Solid Films, 173, 269–278 (1989).

    Google Scholar 

  198. B. Asgharian, D. K. Rice, D. A. Cadenhaed, R. N. A. H. Lewis, and R. N. McElhaney, Monomolecular film behaviour of a homologous series of 1,2-bis(ω-cyclohexyacyl) phosphatidylcholines at the air/water interface, Langmuir, 5, 30–34 (1989).

    CAS  Google Scholar 

  199. F. M. Menger, S. D. Richardson, M. G. Wood, Jr., and M. J. Sherrod, Chain-substituted lipids in monomolecular films. Effect of polar substituents on molecular packing. Langmuir, 5, 833–838 (1989).

    CAS  Google Scholar 

  200. N. F. Zhou and B. A. Pethica, Monolayers of human plasma fibronectin at the air/water interface, Langmuir, 2, 47–50 (1986).

    CAS  Google Scholar 

  201. W. M. Heckl, M. Thompson, and H. Möhwald, Fluorescence and electron microscopic study of lectin-polysaccharide and immunochemical aggregation at phospholipid Langmuir-Blodgett monolayers, Langmuir, 5, 390–394 (1989).

    CAS  Google Scholar 

  202. J-P. Chauvet and L. K. Patterson, Measurement of fluorescence depolarization for chlorophyll-a and chlorophyll-b in spread monolayers at the nitrogen-water interface, Thin Solid Films, 159, 149–157 (1988).

    CAS  Google Scholar 

  203. D. Guay and R. M. Leblanc, Excess free energies of interaction of chlorophyll-a with α-tocopherylquinone and plastoquinone 3 and 9. A mixed-monolayer study, Langmuir, 3, 575–580 (1987).

    CAS  Google Scholar 

  204. J. B. Peng, M. Prakash, R. Macdonald, P. Dutta, and J. B. Ketterson, Fornation of multilayers of dipalmitoyl phosphatidylcholine using the Langmuir-Blodgett technique, Langmuir, 3, 1096–1097 (1987).

    CAS  Google Scholar 

  205. M. P. Srinivasan, B. G. Higgins, P. Stroeve, and S. T. Kowel, Entrainment of aqueous subphase in Langmuir-Blodgett films, Thin Solid Films, 159, 191–205 (1988).

    CAS  Google Scholar 

  206. J. B. Peng, J. B. Ketterson, and P. Dutta, A study of the transition from Y- to X-type transfer during deposition of lead stearate and cadmium stearate Langmuir-Blodgett films, Langmuir, 4, 1198–1202 (1988).

    CAS  Google Scholar 

  207. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. B. Rabolt, K. J. Wynne, and H. Yu, Molecular monolayers and films, Langmuir, 3, 932–950 (1987).

    CAS  Google Scholar 

  208. T. Moriizumi, Langmuir-Blodgett films as chemical sensors, Thin Solid Films, 160, 413–429 (1988).

    Google Scholar 

  209. M. Sriyudthsak, H. Yamagishi, and T. Moriizumi, Enzyme-immobilized Langmuir-Blodgett film for a biosensor, Thin Solid Films, 160, 463–469 (1988).

    CAS  Google Scholar 

  210. Y. Okahata, T. Tsuruta, K. Ijiro, and K. Ariga, Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes, Langmuir, 4, 1373–1375 (1988).

    CAS  Google Scholar 

  211. M. Aizawa, M. Matsuzawa, and H. Shinohara, An optical chemical sensor using a fluorophor-embedded Langmuir-Blodgett film, Thin Solid Films, 160, 477–481 (1988).

    CAS  Google Scholar 

  212. B. M. Abraham and J. B. Ketterson, Determination of the viscosity of valinomycin monolayers as a function of surface density and a comment on conformation, Langmuir, 1, 461–464 (1985).

    CAS  Google Scholar 

  213. J. B. Peng, B. M. Abraham, P. Dutta, J. B. Ketterson, and H. F. Gibbard, Langmuir-Blodgett deposition of a ring-shaped molecule (valinomycin), Langmuir, 3, 104–106 (1987).

    CAS  Google Scholar 

  214. V. A. Howarth, M. C. Petty, G. H. Davies, and J. Yarwood, The deposition and characterization of multilayers of the ionophore valinomycin, Thin Solid Films, 160, 483–489 (1988).

    CAS  Google Scholar 

  215. V. A. Howarth, M. C. Petty, G. H. Davies, and J. Yarwood, Infrared studies of valinomycin containing Langmuir-Blodgett films, Langmuir, 5, 330–332 (1989).

    CAS  Google Scholar 

  216. I. D. Swalen, Linear and nonlinear optical and spectroscopic properties of Langmuir-Blodgett films, Thin Solid Films, 160, 197–208 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swart, R.M. (1990). Monolayers and Multilayers of Biomolecules. In: Roberts, G. (eds) Langmuir-Blodgett Films. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3716-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3716-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3718-6

  • Online ISBN: 978-1-4899-3716-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics