Skip to main content

Scaling Exponents at a Mobility Edge in Two Dimensions

  • Chapter
Quantum Coherence in Mesoscopic Systems

Part of the book series: NATO ASI Series ((NSSB,volume 254))

Abstract

It is now widely recognized that electrons in very dirty metals localize [1] and an Anderson metal-insulator transition occurs in disordered lattice systems when the Fermi level crosses a mobility edge which separates extended from localized states in the energy spectra. Such viewpoint of localization relies on a simplified non-interacting electron picture. In this context a one- parameter scaling theory [2] offers the theoretical framework to understand the results for the associated critical behavior within a few universality classes. In fact, three universality classes are distinguished [3], depending on symmetry: the orthogonal in the case of a random potential, the unitary when a magnetic field is added and the symplectic when spin-orbit coupling is also present. A firm prediction exists for the presence of a phase transition for the orthogonal universality class only in three or higher dimensions. Two-dimensional (2D) disordered systems, however, are believed to display mobility edges and extended states when spin-orbit coupling or a strong magnetic field are present, that is for the symplectic and unitary universality classes, respectively. Our theme is precisely the study of a mobility edge in 2 D and the details of the associated critical behaviour which are largely open questions. 2 D is also an especially promising area to study conformai invariance [4]. Emphasis is placed on the following aspects: Firstly, the evaluation of the localization length exponent v and the correlation exponent by scaling the dominant Lyapunov exponent near the transition. Secondly, a complete numerical analysis of the spectral distributions for all the Lyapunov exponents in connection with the predictions of weak disorder theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. E. Abrahams, P.W. Anderson, L.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  3. S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)

    Article  ADS  Google Scholar 

  4. J.L. Cardy, J. Phys. A: Math. Gen 17, L385 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Wegner, Phys. Rep. 67, 15 (1980);

    Article  ADS  MathSciNet  Google Scholar 

  6. ibid Nucl. Phys. B 270, 1 (1980). A negative correction for the conductivity exponent s is found in Nucl. Phys B 316, 663 (1989), i.e. s = 1–9ζ(3)ε 3/4 + O(ε4) which gives v = s/ε violating the inequality v ≥ 2/d (see [13])

    Google Scholar 

  7. S.N. Evangelou and T.A.L. Ziman, J. Phys. C: Sol. St. Phys. 20, L235 (1987)

    Article  ADS  Google Scholar 

  8. T. Ando, Phys. Rev. B 40, 5325 (1989)

    Article  ADS  Google Scholar 

  9. A. MacKinnon, in: Localization Interaction and Transport Phenomena, Springer Ser. in Sol. St. Sc. 61, 90 (1985)

    Article  Google Scholar 

  10. G. Bergmann, Phys. Rep. 107, 1 (1984)

    Article  ADS  Google Scholar 

  11. J.-L. Pichard and G.J. Sarma, J. Phys.: Sol. St. Phys. 14 L127, 617 (1981)

    ADS  Google Scholar 

  12. A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983)

    Article  Google Scholar 

  13. J.-L. Pichard, J .Phys.: Sol. St. Phys. 14 L127, 617 (1981)

    ADS  Google Scholar 

  14. J.T. Chayes, L. Chayes, D.S. Fisher, and T. Spencer, Phys. Rev. Lett. 57, 2999 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. J.-L. Pichard and G. J. Sarma, J. Phys.: Sol. St. Phys. 18, 3457 (1985)

    ADS  Google Scholar 

  16. J.-L. Pichard and G. J. Andre , Europhys. Lett. 2, 477 (1986)

    Google Scholar 

  17. S.N. Evangelou, Phys. Rev. B 39, 12895 (1989)

    Article  Google Scholar 

  18. J.T. Chalker and G.J. Daniel, S.N. Evangelou, and B. Nahm (to be published)

    Google Scholar 

  19. S.N. Evangelou (J. Phys. A, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evangelou, S. (1991). Scaling Exponents at a Mobility Edge in Two Dimensions. In: Kramer, B. (eds) Quantum Coherence in Mesoscopic Systems. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3698-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3698-1_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3700-1

  • Online ISBN: 978-1-4899-3698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics