Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 254))

Abstract

The quantum Hall effect [1] occurs in two-dimensional electronic systems (2 DES) [2] in strong perpendicular magnetic fields. It differs from many of the phenomena which are being discussed at this ASI in that it does not depend directly on quantum coherence for its occurrence. Quantum coherence plays an important supporting role rather that a starring role in this drama. At low temperatures and strong magnetic fields the magnetoresistance of two-dimensional (2D) metals becomes extremely small and the Hall resistance nearly constant over certain ranges of carrier density and magnetic field strength. Although this effect seemed quite mysterious at the time of its discovery, the principle elements of the physics which is responsible are now understood. In these notes I hope to explain these elements and to point out some aspects of our current theoretical picture of the phenomenon which seem to be incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 454 (1980)

    Article  ADS  Google Scholar 

  2. The properties of two dimensional electronic systems are reviewed by T. Ando, A. B. Fowler and F. Stern Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  3. The integrand in the expression for the magnetization operator depends on a choice of gauge and we have chosen the symmetric gauge. It is easy to show, however, using the continuity equation and the fact that the current density vanishes outside the sample that the total magnetization is gauge independent

    Google Scholar 

  4. P. Streda, J. Phys. C 15, L717 (1982)

    ADS  Google Scholar 

  5. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  6. B.I. Halperin, Phys. Rev. B 25, 2185 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. R.E. Prange, Phys. Rev. B 23, 4802 (1981)

    Article  ADS  Google Scholar 

  8. A.H. MacDonald and P. Streda, Phys. Rev. B 29, 1616 (1984)

    Article  ADS  Google Scholar 

  9. E. Teller, Z. f. Phys. 67, 311 (1931)

    Article  ADS  MATH  Google Scholar 

  10. L. Landau, Z. f. Phys. 64, 629 (1930)

    Article  ADS  MATH  Google Scholar 

  11. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  12. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  13. See the article by C.W.J. Bennakker in this volume.

    Google Scholar 

  14. P. Streda, J. Kucera, and A.H. MacDonald, Phys. Rev. Lett. 59, 1973 (1987);

    Article  ADS  Google Scholar 

  15. J.K. Jain and S.A. Kivelson, Phys. Rev. B 37, 4276 (1988);

    Article  ADS  Google Scholar 

  16. M. Büttiker, Phys. Rev. B 38, 9375 (1988)

    Article  Google Scholar 

  17. B.J. van Wees, E.M.M. Willems, C.J.P.M. Harmans, C.W.J. Bennakker, I.L. van Houton, J.G. Williamson, C.T. Foxon, and J.J. Harris, Phys. Rev. Lett. 62 (1989); S. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, Phys. Rev. B 40, 12566 (1989)

    Article  Google Scholar 

  18. Y. Murayama and T. Ando, Phys. Rev. B 35, 2252 (1987) and work cited therein

    Article  ADS  Google Scholar 

  19. M.A. Paalanen, D.C. Tsui, and A.C. Gossard, Phys. Rev. Lett. 25, 5566 (1982)

    ADS  Google Scholar 

  20. Y. Ono, J. Phys. Soc. Jpn. 51, 2055 (1982)

    Article  Google Scholar 

  21. A.A.M. Pruisken, Nuclear Physics b 235, 277 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bodo Huckestein and Bernhard Kramer, Phys. Rev. Lett. 64, 1437 (1990), and work cited therin.

    Google Scholar 

  23. G.V. Mil’nikov and I.M. Sokolov, Pis’ma Zh. Eksp. Teor. Fiz. 48, 494 (1988) [JETP Lett. 48, 536 (1988)]

    Google Scholar 

  24. S.A. Trugman, Phys. Rev. 27, 7539 (1983)

    Article  ADS  Google Scholar 

  25. H.P. Wei, D.C. Tsui, M.A. Paalanen, and A.M.M. Pruisken Phys. Rev. Lett. 61, 1294 (1988)

    Article  ADS  Google Scholar 

  26. H.P. Wei, D.C. Tsui, and A.M.M. Pruisken, Phys. Rev. B 33, 1488 (1986)

    Article  ADS  Google Scholar 

  27. D. Hofstader, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  28. David Thouless, Phys. Rep. 110, 279 (1984)

    Article  ADS  Google Scholar 

  29. D.J. Thouless, M. Kohomoto, M.P. Nightingale, and M. den Nijs Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  30. D.C. Tsui, H.L. Störnier, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  31. A.H. MacDonald Phys. Rev. B 28, 6713 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Claro and G.H. Wannier Phys. Rev. B 19, 6068 (1979)

    Article  ADS  Google Scholar 

  33. A.H. MacDonald Phys. Rev. B 29, 3057 (1984)

    Article  ADS  Google Scholar 

  34. R.R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Rev. Lett. 62, 1173 (1989)

    Article  ADS  Google Scholar 

  35. R.W. Winkler, J.P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 62, 1177 (1989)

    Article  ADS  Google Scholar 

  36. P. Streda, J. Phys. C 15, L1299 (1982)

    Article  ADS  Google Scholar 

  37. B. Simon, Phys. Rev. Lett. 51, 2167 (1983);

    Article  ADS  MathSciNet  Google Scholar 

  38. Q. Niu, D. Thouless, and Wu Y-S Phys. Rev. B 31, 3372 (1985);

    Article  ADS  MathSciNet  Google Scholar 

  39. D.J. Thouless, Phys. Rev. B 40, 12034, 1989 and work quoted therein

    Article  Google Scholar 

  40. R.G. Clark, R.J. Nicholas, A. Usher, C.T. Foxon, and J.J. Harris, Surf. Sci. (Netherlands) 170, 141 (1986)

    Article  ADS  Google Scholar 

  41. G.S. Boebinger, A.M. Chang, H.L. Stornier, and D.C. Tsui, Phys. Rev. Lett. 55, 1606 (1985)

    Article  ADS  Google Scholar 

  42. J. Wakabayashi, S. Sudou, S. Kawaji, K. Hirakasw, and H. Sakak Phys. Soc. Jpn. 56, 3005 (1987)

    Article  ADS  Google Scholar 

  43. S.M. Girvin and T. Jach, Phys. Rev. B 29, 5617 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  44. S.M. Girvin, Phys. Rev. B 30, 558 (1984);

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Levesque and J.J. Weis, Phys. Rev. B 30, 1056 (1984)

    Article  ADS  Google Scholar 

  46. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  47. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Gros and A.H. MacDonald, submitted to Phys. Rev. B (1990)

    Google Scholar 

  49. D. Yoshioka, B.I. Halperin, and P.A. Lee, Phys. Rev. Lett. 50, 1219 (1983)

    Article  ADS  Google Scholar 

  50. J.K. Jain, S.A. Kivelson, and N. Trivedi, Phys. Rev. Lett. 64, 1297 1990

    Article  ADS  Google Scholar 

  51. B.I. Halperin, Phys. Rev. Lett. 52, 1583 (1984)

    Article  ADS  Google Scholar 

  52. see R.P. Feynman, Statistical Mechanics, Benjamin, Read Mass (1972), and references therein

    Google Scholar 

  53. S.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. Lett. 54, 581 (1985)

    Article  ADS  Google Scholar 

  54. S.M. Girvin, A.H. Macdonald, and P.M. Platzman, Phys. Rev. Lett. 33, 2481 (1986)

    ADS  Google Scholar 

  55. F. Wilczek, Phys. Rev. B 49, 957 (1982);

    ADS  MathSciNet  Google Scholar 

  56. D.P. Arovas, J.R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys. 251, 117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  57. S.M. Girvin and A.H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987)

    Article  ADS  Google Scholar 

  58. F.D.M. Haldane, Phys. Rev. Lett. 61, 1985 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  59. S.M. Girvin, in : The Quantum Hall Effect, R.E. Prange and S.M. Girvin, eds., Chapter 10, Springer-Verlag, New York (1986);

    Google Scholar 

  60. N. Read, Phys. Rev. Lett. 62, 86 (1989);

    Article  ADS  Google Scholar 

  61. S.C. Zhang, T.H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989)

    Article  ADS  Google Scholar 

  62. V. Kalmeyer and R.B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987);

    Article  ADS  Google Scholar 

  63. R.B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988)

    Article  ADS  Google Scholar 

  64. F.D.M. Haldane, in: The Quantum Hall Effect, R.E. Prange and S.M. Girvin, eds., Chapter 8, Springer-Verlag, New York (1986), and references therein

    Google Scholar 

  65. A.H. MacDonald and U. Ekenberg, Phys. Rev. B 39, 595 (1989)

    Google Scholar 

  66. S.-R. Eric Yang, A.H. MacDonald, and D. Yoshioka, Phys. Rev. B 41, 1290 (1990)

    Article  Google Scholar 

  67. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983)

    Google Scholar 

  68. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983);

    Google Scholar 

  69. T. Chakraborty and F.C. Zhang, Phys. Rev. B 29, 703 (1984) 703 (1984)

    Article  Google Scholar 

  70. J.P. Eisenstein, H.L. Stornier, L. Pfeiffer, and K.W. West, Phys. Rev. Lett. 62, 1540 (1989);

    Article  ADS  Google Scholar 

  71. R.G. Clark, S.R. Haynes, A.M. Suckling, J.R. Mallett, P.A. Wright, J.J. Harris, and CT. Foxon, Phys. Rev. Lett. 62, 1536 (1989)

    Article  ADS  Google Scholar 

  72. G.S. Boebinger, H.W. Jiang, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 64, 1793 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacDonald, A.H. (1991). The Quantum Hall Effects. In: Kramer, B. (eds) Quantum Coherence in Mesoscopic Systems. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3698-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3698-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3700-1

  • Online ISBN: 978-1-4899-3698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics