Skip to main content

Abstract

The experimental techniques of Raman spectroscopy and far-infrared (FIR) Fourier-transform spectroscopy have been applied to a range of semiconductor superlattice specimens. Both resonant and non-resonant Raman scattering are available, and the Fourier-transform techniques include normal-incidence dispersive Fourier-transform spectroscopy (DFTS), attenuated total-reflection (ATR) spectroscopy, and oblique-incidence power Fourier-transform spectroscopy (FTS).

We first present results on undoped long-period GaAs/AlxGa1-xAs specimens that can be understood by means of a simple effective-medium theory. A combination of Raman and FIR data on undoped short-period GaAs/AlAs specimens yields detailed information on positions and dipole strengths of confined optic phonons. Finally we report results on free-carrier-related response, obtained on a GaAs superlattice δ-doped with Si layers, and it is shown that the spectra are sensitive to the spatial distribution of carriers within the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. A. Maslin and T. J. Parker, J. SPIE 1240, 476 (1989).

    Google Scholar 

  2. K. A. Maslin and T. J. Parker, Int. J. Infrared and Millimeter Waves (in press).

    Google Scholar 

  3. T. J. Parker, Contemp. Phys. (in press).

    Google Scholar 

  4. T. Dumelow and T. J. Parker, SPIE J. 1240, 472 (1989).

    Google Scholar 

  5. T. Dumelow and T. J. Parker, Int. J. Infrared and Millimeter Waves (in press).

    Google Scholar 

  6. J. R. Birch and T. J. Parker, “Infrared and Millimeter Waves,” Vol. 2, K. J. Button ed., Academic Press, New York (1979).

    Google Scholar 

  7. A. Otto, Z. Physik 216, 398 (1968).

    Article  ADS  Google Scholar 

  8. A. Otto, Festkörperprobleme XIV, 1 (1974).

    Google Scholar 

  9. S. M. Rytov, Zh. Eksp. Teor. Fiz. 22, 605 (1955) [Sov. Phys. JETP 2, 466.]

    Google Scholar 

  10. A. Yariv and P. Yeh, J. Opt. Soc. Am. 67, 438 (1977).

    Article  ADS  Google Scholar 

  11. N. Raj and D. R. Tilley, Solid State Commun. 55, 373 (1985).

    Article  ADS  Google Scholar 

  12. V. M. Agranovich and V. E. Kravotov, Solid State Commun. 55, 85 (1985).

    Article  ADS  Google Scholar 

  13. N. Raj and D.R. Tilley, The electrodynamics of superlattices, in: “The Dielectric Function of Condensed Systems,” L. V. Keldysh, D. A., Kirzhnitz, and A. A. Maradudin, eds., Elsevier, Amsterdam (1989).

    Google Scholar 

  14. K. A. Maslin, T. J. Parker, N. Raj, D. R. Tilley, P. J. Dobson, D. Hilton and C. T. B. Foxon, Solid State Commun. 60, 461 (1986).

    Article  ADS  Google Scholar 

  15. T. Dumelow, A. R. El-Gohary, A. A. Hamilton, K. A. Maslin, T. J. Parker, N. Raj, B. Samson, S. R. P. Smith, D. R. Tilley, P. J. Dobson, C. T. B. Foxon, D. Hilton, and K. J. Moore, Mater. Sci. Eng. B 5, 205 (1990).

    Article  Google Scholar 

  16. M. G. Cottam and D. R. Tilley, “Introduction to Surface and Superlattice Excitations,” (Cambridge University Press, Cambridge 1989).

    Book  Google Scholar 

  17. N. Raj, R. E. Camley and D. R. Tilley, J. Phys. C 20, 5203 (1987).

    Article  ADS  Google Scholar 

  18. V. N. Lyubimov and D. G. Sannikov, Fiz. Tverd. Tela 14, 675 (1972). [Sov. Phys. Solid State 14, 575.]

    Google Scholar 

  19. A. Hartstein, E. Burstein, J. J. Brian and R. F. Wallis, Solid State Commun. 12, 1083 (1973).

    Article  ADS  Google Scholar 

  20. A. R. El-Gohary, T. J. Parker, N. Raj, D. R. Tilley, P. J. Dobson, D. Hilton, and C. T. B. Foxon, Semicond. Sci. Technol. 4, 388 (1989).

    Article  ADS  Google Scholar 

  21. S. Perkowitz, D. Rajavel, I. K. Sou, J. Reno, J. P. Faurie, C. E. Jones, T. Casselman, K. A. Harris. J. W. Cook, Jr., and J. F. Schetzina, Appl. Phys. Lett. 49, 806 (1986).

    Article  ADS  Google Scholar 

  22. S. Perkowitz, R. Sudharsanan, S. S. Yom, and T. J. Drummond, Solid State Commun. 62, 645 (1987).

    Article  ADS  Google Scholar 

  23. R. Sudharsanan, S. Perkowitz, B. Lou, T. J. Drummond, and B. L. Doyle, Superlatt. Microstr. 4, 657 (1988).

    Article  ADS  Google Scholar 

  24. B. Lou, R. Sudharshan, and S. Perkowitz, Phys. Rev. B 38. 2212 (1988).

    Article  ADS  Google Scholar 

  25. T. Dumelow, A. R. El-Gohary, K. A. Maslin, D. R. Tilley, and S. N. Ershov, Mater. Sci. Eng. B 5, 217 (1990).

    Article  Google Scholar 

  26. J. Sapriel and B. Djafari-Rouhani, Surf. Sci. Rep. 10, 189 (1989).

    Article  Google Scholar 

  27. H. Chu and Y.-C. Chang, Phys. Rev. B 38, 12 369 (1988).

    Google Scholar 

  28. Z. P. Wang, D. S. Jiang, and K. Ploog, Solid State Commun. 64, 661 (1988).

    Article  ADS  Google Scholar 

  29. B. Jusserand and J. Sapriel, Phys. Rev. B 24, 7194 (1981).

    Article  ADS  Google Scholar 

  30. T. Dumelow, A. Hamilton, T. J. Parker, B. Samson, S. R. P. Smith, D. R. Tilley, D. Hilton, K. J. Moore, and C. T. B. Foxon, Proc. 3rd Int. Conf. on Phonon Physics, Heidelberg (1989).

    Google Scholar 

  31. R. B. Beall, J. B. Clegg, J. Castagne, J. J. Harris, R. Murray, and R. C. Newman, Semicond. Sci. Technol. 4, 1171 (1989).

    Article  ADS  Google Scholar 

  32. S. Perkowitz, R. Sudharsanan, K. A. Harris, J. W. Cook, J. F. Schetzina, and J. N. Schulman, Phys. Rev. B 36, 9290 (1987).

    Article  ADS  Google Scholar 

  33. S. Perkowitz, B. Lou, L. S. Kim, O. K. Wu, and J. N. Schulman, Phys. Rev. B 40, 5613 (1989).

    Article  ADS  Google Scholar 

  34. S. R. Streight and D. L. Mills, Phys. Rev. B 40, 10 488 (1989).

    Google Scholar 

  35. R. E. Camley and D. L. Mills, Phys. Rev. B 26, 1280 (1982).

    Article  ADS  Google Scholar 

  36. N. S. Almeida and D. R. Tilley, Solid State Commun. 73, 23 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dumelow, T. et al. (1991). Far-Infrared and Raman Studies of Semiconductor Superlattices. In: Lockwood, D.J., Young, J.F. (eds) Light Scattering in Semiconductor Structures and Superlattices. NATO ASI Series, vol 273. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3695-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3695-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3697-4

  • Online ISBN: 978-1-4899-3695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics