Skip to main content

Non-Equilibrium Phonon Dynamics in Ge and GeSi Alloys

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 273))

Abstract

The ability of the Raman scattering technique to coherently probe specific excitation modes of a semiconductor, providing both spectral and thermodynamic information, makes it a powerful tool for time-resolving relaxation processes. Its coherent nature means that the temporal resolution obtained when a short, “probe” pulse is used to Raman scatter from a non-equilibrium system induced by a relatively strong “pump” pulse applied some time t in the past, is limited only to the pulse duration. This is achieved without having to employ any ultrafast electronic, electro-optic, or non-linear mixing techniques which are required in time-resolved photoluminescence experiments. By relating the ratio of Stokes and anti-Stokes scattering strengths obtained from the probe pulses to the occupation number of the corresponding mode, it is possible to directly monitor the buildup and decay of non-equilibrium populations generated either directly or indirectly by the absorption of the pump pulse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Collins and P.Y. Yu, Phys. Rev. B 30, 4501 (1984).

    Article  ADS  Google Scholar 

  2. D. von der Linde, J. Kühl and H. Klingenber, Phys. Rev. Lett. 44, 1505 (1980).

    Article  ADS  Google Scholar 

  3. J.A. Kash, J.C. Tsang, and J.M. Hvam, Phys. Rev. Lett. 54, 2151 (1985).

    Article  ADS  Google Scholar 

  4. J.A. Kash, S.S. Jha, and J.C. Tsang, Phys. Rev. Lett. 58, 1869 (1987).

    Article  ADS  Google Scholar 

  5. J.F. Young, and K. Wan, Phys. Rev. B 35, 2544 (1987).

    Article  ADS  Google Scholar 

  6. J.F. Young, K. Wan, A.J. SpringThorpe, and P. Mandeville, Phys. Rev. B 36, 1316 (1987).

    Article  ADS  Google Scholar 

  7. K.T. Tsen and H. Morkoc, Phys. Rev. B 34, 4412 (1986).

    Article  ADS  Google Scholar 

  8. D.Y. Oberli, D.R. Wake, M.V. Klein, J. Klem, T. Henderson, and H. Morkoc, Phys. Rev. Lett. 59, 696 (1987).

    Article  ADS  Google Scholar 

  9. D. Kim and P.Y. Yu, Phys. Rev. Lett. 64, 946 (1990).

    Article  ADS  Google Scholar 

  10. M.C. Tatham, J.F. Ryan, and C.T. Foxon, Sol. State Elec. 32, 1497 (1989).

    Article  ADS  Google Scholar 

  11. J.F. Young, K. Wan, and H.M. van Driel, Sol. State Elec. 31, 455 (1988).

    Article  ADS  Google Scholar 

  12. A. Othonos, H.M. van Driel, J.F. Young, and P.J. Kelly, Phys. Rev. B 43, 6682 (1991).

    Article  ADS  Google Scholar 

  13. S.S. Iyer, G.L. Patton, J.M.C. Stork, B.S. Meyerson, and D.L. Harame, IEEE Trans. Electron Devices 36, 2403 (1989).

    Google Scholar 

  14. H.M. van Driel, Phys. Rev. B 35, 8166 (1987).

    Article  ADS  Google Scholar 

  15. E. Conwell, “High Field Transport in Semiconductors”, Solid State Physics Suppl. 9, Academic, New York (1967).

    Google Scholar 

  16. L. Reggiani in: “Proceedings on the 15th International Conference on the Physics of Semiconductors”, J. Phys. Soc. Jpn. Suppl. A 49, 317 (1980).

    Google Scholar 

  17. R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R.J. Zijlstra, J. Appl. Phys. 52, 6713 (1981).

    Article  ADS  Google Scholar 

  18. J.F. Young, P.J. Kelly, and N.L. Henry, Phys. Rev. B 36, 4535 (1987).

    Article  ADS  Google Scholar 

  19. A. Elci, M.O. Scully, A.L. Smirl, and J.C. Matter, Phys. Rev. B 16, 191 (1977).

    Article  ADS  Google Scholar 

  20. M. Neuberger, “Group IV Semiconducting Materials”, Handbook of electronic materials Vol. 5, Plenum, New York, (1971).

    Google Scholar 

  21. Landolt-Borstein, “Numerical Data and Functional Relationships in Science and Technology”, Vol. 17, O. Madelung, M. Schulz, and H. Weiss eds., Springer-Verlag, Berlin, (1982).

    Google Scholar 

  22. This value was chosen for comparison because of the suggestion in Ref. 15 that the ratio of hole and electron squared deformation potentials in Ge might be ~ 10.

    Google Scholar 

  23. D.J. Lockwood, M.W.C. Dharma-wardana, D.C. Houghton, and J.M. Baribeau, Phys. Rev. B 35, 2243 (1987).

    Article  ADS  Google Scholar 

  24. W.J. Brya, Sol. State Comm. 12, 253 (1973).

    Article  ADS  Google Scholar 

  25. J.B. Renucci, M.A. Renucci, and M. Cardona, Sol. State Comm. 9, 1651 (1971).

    Article  ADS  Google Scholar 

  26. M.I. Alonso and K. Winer, Phys. Rev. B 39, 10056 (1989).

    Article  ADS  Google Scholar 

  27. P. Parayanthal and F.H. Pollak, Phys. Rev. Lett. 52, 1822 (1984).

    Article  ADS  Google Scholar 

  28. R.A. Cowley, J. Phys. 26, 659 (1976).

    Article  ADS  Google Scholar 

  29. D.W. Taylor in: “Optical Properties of Mixed Crystals”, R.J. Elliott and I.P. Ipatova, eds., Elsevier, Amsterdam (1988), Chapter 2.

    Google Scholar 

  30. B.A. Weinstein, Sol. State Comm. 20, 999 (1976).

    Article  ADS  Google Scholar 

  31. J. Menéndez and M. Cardona, Phys. Rev. B 29, 2051 (1984).

    Article  ADS  Google Scholar 

  32. G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971).

    Article  ADS  Google Scholar 

  33. A.H. MacDonald, S.H. Vosko, and P.T. Coleridge, J. Phys. C, 12, 2991 (1979).

    Article  ADS  Google Scholar 

  34. D.N. Talwar and K.S. Suh, Phys. Rev. B 36, 6045 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, J.F., Lockwood, D.J., Baribeau, J.M., Kelly, P.J., Othonos, A., van Driel, H.M. (1991). Non-Equilibrium Phonon Dynamics in Ge and GeSi Alloys. In: Lockwood, D.J., Young, J.F. (eds) Light Scattering in Semiconductor Structures and Superlattices. NATO ASI Series, vol 273. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3695-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3695-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3697-4

  • Online ISBN: 978-1-4899-3695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics