Skip to main content

Strain Characterization of Semiconductor Structures and Superlattices

  • Chapter
Book cover Light Scattering in Semiconductor Structures and Superlattices

Part of the book series: NATO ASI Series ((NSSB,volume 273))

Abstract

The effects of strains on the Raman-active optical phonons of crystalline materials are reviewed, with emphasis on Si and zincblende (ZB) or wurtzite (W) cubic crystals, their strained epilayers (EL) and superlattices (SL). In the presence of strains the symmetry of the crystal is altered and the phonon degeneracies may be lifted with an upward or downward shift of their frequencies. To a first approximation the shifts are linear in the strain components; the corresponding rates lead to the so-called phonon deformation potentials (PDP). The latter allow the calculation of built-in strains from any observed frequency shifts. The dynamical secular equation (DSE) associated with the phonon provides the necessary phenomenological basis for converting frequency shifts to strains and vice versa. The same problem, i.e., the DSE of triply-degenerate q≈0 optical phonons of cubic crystals, is treated here in an arbitrary system of axis x’1x’2x’3 relative to the system x1x2x3 of the crystallographic axes <100>. This generalization is dictated by the need of handling phonon shifts and splittings in EL and SL which are grown along an arbitrary direction x’3. For this purpose, it is necessary to have precise knowledge of the strain field, namely, the fuL.L. array of its non-zero tensor components. This is a problem of elasticity theory and will be addressed independently. Strained polycrystalline films will also be treated. For this purpose, the PDP of a polycrystal are expressed in terms of the PDP of the corresponding single crystal, by use of averaging procedures. Examples will be given of recent determinations of reliable PDP values in materials of current interest, and also selective cases from the literature, where strain characterization through Raman Scattering (RS) is successfully demonstrated. In what follows, Greek (Latin) tensor indices stand for single cartesian (suppressed) indices running from 1(1) to 3(6), according to the usual code of crystal physics1 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Nye, “Physical Properties of Crystals”, Clarendon Press, Oxford (1964)

    Google Scholar 

  2. E. Anastassakis and E. Burstein, J. Phys. Chem. Solids 32: 563 (1971).

    ADS  Google Scholar 

  3. E.M. Anastassakis, “Dynamical Properties of Solids”, Vol. 4, G.K. Horton and A.A. Maradudin, Eds., North-Holland (1980) p. 157.

    Google Scholar 

  4. E. Anastassakis and E. Liarokapis, Phys. Stat. Sol. (b) 69:137 (1988).

    Google Scholar 

  5. E. Anastassakis, J. Appl. Phys.” 68: 4561 (1990).

    ADS  Google Scholar 

  6. R.W. Vook and F. Witt, J. Appl. Phys. 36: 2169 (1965).

    ADS  Google Scholar 

  7. F. Witt and R.W. Vook, J. Appl. Phys. 39: 2773 (1969).

    ADS  Google Scholar 

  8. M. Murakami and T. Yogi, J. Appl. Phys. 57: 211 (1985).

    ADS  Google Scholar 

  9. E. Friess, H. Brugger, K. Eberl, G. Krotz, and G. Abstreiter, Solid State Commun. 69: 899 (1989).

    ADS  Google Scholar 

  10. E. Anastassakis and E. Liarokapis, J. Appl. Phys. 62: 3346 (1987).

    ADS  Google Scholar 

  11. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, and M. Cardona, Solid State Commun. 8: 133 (1970).

    ADS  Google Scholar 

  12. M. Chandrasekhar, J.B. Renucci, and M. Cardona, Phys. Rev. B17: 1623 (1978)

    ADS  Google Scholar 

  13. E. Anastassakis, A. Cantarero, and M. Cardona, Phys. Rev. B41: 7529 (1990).

    ADS  Google Scholar 

  14. F. Cerdeira, C.J. Buchenauer, F.H. Pollak, and M. Cardona, Phys. Rev. B5: 580 (1972).

    ADS  Google Scholar 

  15. M.H. Grimsditch, E. Anastassakis, and M. Cardona, Phys. Rev. B18: 901 (1978).

    ADS  Google Scholar 

  16. P. Wickboldt, E. Anastassakis, R. Sauer, and M. Cardona, Phys. Rev. B35: 1362 (1987).

    ADS  Google Scholar 

  17. E. Anastassakis and M. Cardona, Solid State Commun. 64: 543 (1987).

    ADS  Google Scholar 

  18. E. Anastassakis, Y.S. Raptis, M. Hunnerman, W. Richter, and M. Cardona, Phys. Rev. B38: 7702 (1988).

    ADS  Google Scholar 

  19. E. Anastassakis and M. Cardona, Solid State Commun. 63: 893 (1987).

    ADS  Google Scholar 

  20. E. Anastassakis, F.H. Pollak, and G.W. Rubloff, “Proc. 11th Int. Conf. on Physics of Semiconductors”, Polish Scientific Publishers, Warsaw (1972) p. 1188.

    Google Scholar 

  21. I. Balslev, Phys. stat. sol. (b) 61: 207 (1974).

    ADS  Google Scholar 

  22. E. Anastassakis, in “Physical Problems in Microelectronics” J. Kassabov, Ed., World Scientific, Singapore (1985) p. 128.

    Google Scholar 

  23. T. Englert, G. Abstreiter, and J. Pontcharra, Solid State Electr. 23: 31 (1980).

    ADS  Google Scholar 

  24. G.A. Sai-Halasz, F.F. Fang, T.O. Sedwick, and A. Segmuller, Appl. Phys. Lett. 36: 419 (1980).

    ADS  Google Scholar 

  25. K. Yamazaki, M. Yamada, K. Yamamoto, and K. Abe, Japn. J. Appl. Phys. 20: L299, L371 (1981).

    ADS  Google Scholar 

  26. Y. Ohmura, T. Inoue, and T. Yoshii, J. Appl. Phys. 54: 6779 (1983).

    ADS  Google Scholar 

  27. F. Moser and R. Beserman, J. Appl. Phys. 54: 1033 (1983).

    ADS  Google Scholar 

  28. Y. Kobayashi, M. Nakamura, and T. Suzuki, Appl. Phys. Lett. 40: 1040 (1982).

    ADS  Google Scholar 

  29. M. Nakamura, Y. Kobayashi, and K. Usami, Jpn. J. Appl. Phys. 23: 687 (1984).

    ADS  Google Scholar 

  30. K. Yamazaki, M. Yamada, K. Yamamoto, and K. Abe, Jpn. J. Appl. Phys. 23: 681, (1984).

    ADS  Google Scholar 

  31. M.B. Stern, T. R. Harrison, V.D. Archer, P.F. Liao, and J.C. Bean, Solid State Commun. 51: 221 (1984).

    ADS  Google Scholar 

  32. P.M.J. Maree, R.I.J. Olthof, J.W.M. Frenken, J.F. van der Veen, C.W.T. Bulle-Lieuwma, M.P.A. Vieger, and P.C. Zalm, J. Appl. Phys. 58: 3097 (1985)

    ADS  Google Scholar 

  33. D.J. Olego, H. Baumgart, and G.K. Celler, Appl. Phys. Lett. 52: 483 (1988).

    ADS  Google Scholar 

  34. J.C. Tsang and S.S. Iyer, IEEE J. Quant. Elect. QE-25: 1008 (1989).

    ADS  Google Scholar 

  35. J. Gonzalez-Hernandez and R. Tsu, Solid State Commun. 69: 637 (1989).

    Google Scholar 

  36. S. Nakashima, S. Oitma, A. Mitsuishi, T. Nishimura, T. Fukumoto, and Y. Akasaka, Solid State Commun. 40: 765 (1981).

    ADS  Google Scholar 

  37. J. Takahashi and T. Makino, J. Appl. Phys. 63: 87 (1987).

    ADS  Google Scholar 

  38. R.J. Nemanish and D. Haneman, Appl. Phys. Lett. 40: 785 (1982).

    ADS  Google Scholar 

  39. H.S. Tan, M.H. Kuok, S.C. Ng, C.K. Ong, and S.H. Tang, J. Appl. Phys. 55: 1116 (1984).

    ADS  Google Scholar 

  40. F. Cerdeira, A. Pinczuk, J.C. Bean, B. Batlogg, and B.A. Wilson, Appl. Phys. Lett. 45: 1138 (1984).

    ADS  Google Scholar 

  41. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H.J. Herzog, Phys. Rev. Lett. 54: 2441 (1985).

    ADS  Google Scholar 

  42. E. Kasper, H. Kibbel, H. Jorke, H. Brugger, E. Friess, and G. Abstreiter, Phys. Rev. B38: 3599 (1988).

    ADS  Google Scholar 

  43. S.J. Chang, C.F. Huang, M.A. Kallel, K.L. Wang, R.C. Bowman, Jr., and P.M. Adams, Appl. Phys. Lett. 53: 1835 (1988).

    ADS  Google Scholar 

  44. S.A. Lyon, R.J. Nemanich, N.M. Johnson, and D.K. Biegelsen, Appl. Phys. Lett. 40: 316 (1982).

    ADS  Google Scholar 

  45. S.R.J. Brueck, B. Tsaur, J. Fan, D. Murphy, T. Deutsch, and D. Silversmith, Appl. Phys. Lett. 40: 895 (1982).

    ADS  Google Scholar 

  46. P. Zorabedian, F. Adar, Appl. Phys. Lett. 43: 177 (1983).

    ADS  Google Scholar 

  47. S. Nakashima, Y. Inoue, M. Miyauchi, and A. Mitsuishi, J. Appl. Phys. 54: 2611 (1983).

    ADS  Google Scholar 

  48. K. Yamazaki, R.K. Uotani, K. Nambu, M. Yamada, K. Yamamoto, and K. Abe, Jpn. J. Appl. Phys. 23: L403 (1984).

    ADS  Google Scholar 

  49. T. Nishioka, Y. Shinoda, and Y. Ohmachi, J. Appl. Phys. 57: 276 (1985).

    ADS  Google Scholar 

  50. Y.M. Cheong, H.L. Marcus, and F. Adar, J. Mater. Res. 2: 902 (1987).

    ADS  Google Scholar 

  51. S. Nakashima and M. Hango, IEEE J. Quant. Elect. QE-25: 965 (1989).

    ADS  Google Scholar 

  52. D.J. Evans and S. Ushioda, Phys. Rev. B9 :638 (1974).

    Google Scholar 

  53. H. Shen and F.H. Pollak, Appl. Phys. Lett. 45: 692 (1984).

    ADS  Google Scholar 

  54. T. Nakamura, A. Ushirokawa, and T. Katoda, Appl. Phys. Lett. 38: 13 (1981).

    ADS  Google Scholar 

  55. T. Kamijoh, A. Hashimoto, H. Takano, and M. Sakuta, Appl. Phys. Lett. 44: 1084 (1984); J. Appl. Phys. 55: 3756 (1984).

    ADS  Google Scholar 

  56. M. Takai, H. Nakai, S. Nakashima, T. Minamisono, K. Gamo, and S. Namba, Jpn. J. Appl. Phys. 24: L755 (1985).

    ADS  Google Scholar 

  57. S. Nakashima, A. Fujii, K. Mizoguchi, A. Mitsuishi, and K. Yoneda, Jpn. J. Appl. Phys. 27: 1327 (1988).

    ADS  Google Scholar 

  58. Y. Huang, P.Y. Yu, M. Charasse, Y. Lo, and S. Wang, Appl. Phys. Lett. 20: 192 (1987).

    ADS  Google Scholar 

  59. S. Emura, S. Gonda, Y. Matsui, and H. Hayashi, Phys. Rev. B38: 3280 (1988).

    ADS  Google Scholar 

  60. T. Kato, T. Matsumoto, M. Hosoki, and T. Ishida, Jpn. J. Appl. Phys. 26: L1597 (1987).

    ADS  Google Scholar 

  61. Z.C. Feng, W.J. Choyke, and J.A. Powell, J. Appl. Phys. 64: 6827 (1988).

    ADS  Google Scholar 

  62. T. Nomura, Y. Maeda, M. Miyao, M. Hagino, and K. Ishikawa, Jpn. J. Appl. Phys. 26: 908 (1987).

    ADS  Google Scholar 

  63. T. Matsumoto, T. Kato, M. Hosoki, and T. Ishida, Japn. J. Appl. Phys. 26: L576 (1987).

    ADS  Google Scholar 

  64. H. Mukaida, H. Okumura, J.H. Lee, H. Daimon, E. Sakuma, S. Misawa, K. Endo, and S. Yoshida, J. Appl. Phys. 62: 254 (1987).

    ADS  Google Scholar 

  65. G. Bums, C.R. Wie, F.H. Dacol, G.D. Pettit, and G.M. Woodall, Appl. Phys. Lett. 51: 1919 (1987).

    ADS  Google Scholar 

  66. M.J.L.S. Haines, B.C. Cavenett, and S.T. Daven, Appl. Phys. Lett. 55: 849 (1989).

    ADS  Google Scholar 

  67. R.M. Abdelouhab, R. Braunstein, K. Barner, M.A. Rao, and H. Kroemer, J. Appl. Phys. 66: 787 (1989).

    ADS  Google Scholar 

  68. M. Nakayama, K. Kubota, H. Kato, and S. Sano, Solid State Commun. 51: 343 (1984).

    ADS  Google Scholar 

  69. F. Iikawa, F. Cerdeira, C. Vazquez-Lopez, P. Motisuke, M.A. Sacilotti, A. P. Roth, and R.A. Masut, Solid State Commun. 68: 211 (1988).

    ADS  Google Scholar 

  70. M. Nakayama, K. Kubota, H. Kato, T. Kanata, S. Chika, and N. Sano, J. Appl. Phys. 58: 4342 (1985).

    ADS  Google Scholar 

  71. M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Appl. Phys. Lett. 48: 281 (1986).

    ADS  Google Scholar 

  72. R.M. Abdelouhab, R. Braunstein, M.A. Rao, and H. Kroemer, Phys. Rev. B39: 5857 (1989).

    ADS  Google Scholar 

  73. B. Jusserand, P. Voisin, M. Voos, L.L. Chang, E.E. Mendez, and L. Esaki, Appl. Phys. Lett. 46: 678 (1985).

    ADS  Google Scholar 

  74. G.P. Schwartz, G.J. Gualtieri, W.A. Sunder, L.A. Farrow, D.E. Aspnes, and A.A. Studna, J. Vac. Sci. Technol. A5, 1500 (1988); also Phys. Rev. B36: 4868 (1987).

    ADS  Google Scholar 

  75. P.V. Santos, A.K. Sood, M. Cardona, K. Ploog, Y. Ohmori, and H. Okamoto, Phys. Rev. B37: 6381 (1988).

    ADS  Google Scholar 

  76. M. Kobayashi, M. Konagai, K. Takahashi, and K. Urabe, J. Appl. Phys. 61: 1015 (1987).

    ADS  Google Scholar 

  77. S. Nakashima, Y. Nakakura, H. Fujiyasu, and K. Mochizuki, Appl. Phys. Lett. 48: 236 (1986).

    ADS  Google Scholar 

  78. S. Nakashima, A. Wada, H. Fujiyasu, M. Aoki, and H. Yang, J. Appl. Phys. 62: 2009 (1987).

    Google Scholar 

  79. Y.H. Wu, H. Yang, A. Ishida, H. Fujiyasu, S. Nakashima, and K. Tahara, Appl. Phys. Lett. 54: 239 (1989).

    ADS  Google Scholar 

  80. L.H. Shon, K. Inoue, and K. Murase, Solid State Commun. 62: 621 (1987).

    Google Scholar 

  81. M.K. Jackson, R.H. Miles, T.C. McGill, and J.P. Faurie, Appl. Phys. Lett. 55: 786 (1989).

    ADS  Google Scholar 

  82. L.H. Shon, K. Inoue, O. Matsuda, K. Murase, T. Yokagawa, and M. Ogura, Solid State Commun. 67: 779 (1988).

    ADS  Google Scholar 

  83. J. Menendez, A. Pinczuk, J.P. Valladares, R.D. Feldman, and R.F. Austin, Appl. Phys. Lett. 50: 1101 (1987).

    ADS  Google Scholar 

  84. D.J. Olego, K. Shahzad, J. Petruzzello, and D. Cammack, Phys. Rev. B36: 7674 (1987).

    ADS  Google Scholar 

  85. D.J. Olego, K. Shahzad, D.A. Cammack, and H. Cornelissen, Phys. Rev. B38: 5554 (1988).

    ADS  Google Scholar 

  86. H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39: 625 (1981).

    ADS  Google Scholar 

  87. K.K. Tiong, P.M. Amirtharaj, F.H. Pollak, and D.E. Aspnes, Appl. Phys. Lett. 44: 122 (1984).

    ADS  Google Scholar 

  88. E. Anastassakis and J. Tatarkiewicz, Appl. Phys. Lett. 50: 245 (1987).

    ADS  Google Scholar 

  89. E. Anastassakis, K.K. Biskupska, W. Graeff, E. Liarokapis, J. Tatarkiewicz, and K. Wieteska, “Proc. 19th Intern. Conf. Physics of Semiconductors”, Ed. W. Zawadzki, Vol. 1, Institute of Physics, Polish Academy of Sciences Warsaw (1989), p. 753.

    Google Scholar 

  90. E. Liarokapis and Y.S. Raptis, J. Appl. Phys. 57: 5123 (1985) and references therein.

    ADS  Google Scholar 

  91. E. Liarokapis and E. Anastassakis, Physica Scripta 38: 84 (1988); also, J. Appl. Phys. 63: 2615 (1988).

    ADS  Google Scholar 

  92. L.P. Welsh, J.A. Tuchman, and I.P. Herman, J. Appl. Phys. 64: 6274 (1988).

    ADS  Google Scholar 

  93. J. Raptis, E. Liarokapis, and E. Anastassakis, Appl. Phys. Lett. 44: 125 (1984).

    ADS  Google Scholar 

  94. Y.S. Raptis, PhD thesis 1988, National Technical University, Athens, Greece (unpublished).

    Google Scholar 

  95. B.A. Weinstein and M. Cardona, Phys. Rev. B5: 3120 (1972).

    ADS  Google Scholar 

  96. M. Hunermann, W. Richter, J. Saalmuller, and E. Anastassakis, Phys. Rev. B 35: 5381 (1986).

    ADS  Google Scholar 

  97. A.C. Diebold, S.W. Steinhauser, and R.P. Mariella, Jr., J. Vac. Sci. Technol. B7: 365 (1989).

    Google Scholar 

  98. C.S.G. Cousins, L. Gerward, J.S. Olsen, B. Selsmark, B.J. Sheldon, and G. Webster, Semicond. Sci. Technol. 4: 333 (1989).

    ADS  Google Scholar 

  99. J. Suski, V. Mosser, and J. Goss, Sensors and Actuators 17: 405 (1989).

    Google Scholar 

  100. E. Anastassakis, J. Phys. C.: Solid State Phys. 16: 3329 (1983).

    ADS  Google Scholar 

  101. D.F. Nelson and P.D. Lazay, Phys. Rev. Lett. 25: 1187 (1970).

    ADS  Google Scholar 

  102. E. Anastassakis, Phys. Rev. B12: 5934 (1973).

    Google Scholar 

  103. I.I. Novak, V.V. Baptizmanskii, and L.V. Zhoga, Opt. Spectrosc. 43: 145 (1977).

    ADS  Google Scholar 

  104. V.V. Baptizmanskii, I.I. Novak, and Yu.F. Titoves, Sov. Phys. Solid State 21: 1915 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anastassakis, E. (1991). Strain Characterization of Semiconductor Structures and Superlattices. In: Lockwood, D.J., Young, J.F. (eds) Light Scattering in Semiconductor Structures and Superlattices. NATO ASI Series, vol 273. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3695-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3695-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3697-4

  • Online ISBN: 978-1-4899-3695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics