Skip to main content

Optical Properties of Short Period Superlattices

  • Chapter
Granular Nanoelectronics

Part of the book series: NATO ASI Series ((NSSB,volume 251))

Abstract

The purpose of this lecture is to describe the optical properties of short period superlattices. Optical properties have been known to represent the electronic properties of the semiconductors and thus the energy band structures have been probed by measuring the optical properties. This procedure, especially modulated reflectance spectroscopy, has been successfully used to determine the energy band structures of bulk semiconductors, such as Ge, Si, GaAs, GaP, and so on (Cardona, 1969; Seraphin, 1972; Aspnes, 1980). As is well known, molecular beam epitaxy (MBE) enables us to produce various kinds of semiconductor structures such as quantum wells (QWs), superlattices (SLs), and heterojunction devices. These new structures modify the electronic structures by using energy band discontinuity at the interfaces. Therefore their optical and electrical properties are modified in the heterostructures (Ando et al., 1982). For example, electronic states are quantized to form subband structures in QW structures and minibands in SLs, resulting in uniqueness of their density of states, and thus optical properties are quite different from those of bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, T., Fowler, A. B., and Stern, F., 1982, Electronic Properties of two-dimensional systems, Rev. Mod. Phys., 54: 437.

    Article  ADS  Google Scholar 

  • Aspnes, D. A., 1973, Third-derivative modulation spectroscopy with low-field electroreflectance, Surface Sci., 37: 418.

    Article  ADS  Google Scholar 

  • Aspnes, D. A., 1980, Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, in “Handbook on Semiconductors”, Vol. 2, ed. by T. S. Moss (North Holland, N. Y.), p. 109 and references therein.

    Google Scholar 

  • Aspnes, D. A., and Rowe, J. E., 1972, Resonant Nonlinear Optical Susceptibility: Electroreflectance in the low-field limit, Phys. Rev. B, 5: 4022.

    Article  ADS  Google Scholar 

  • Bastard, G., 1981, Superlattice band structure in the envelope-function approximation, Phys. Rev. B, 24: 5693.

    Article  ADS  Google Scholar 

  • Bastard, G., 1982, Theoretical investigations of superlattice band structure in the envelope-function approximation, Phys. Rev. B, 25: 7584.

    Article  ADS  Google Scholar 

  • Cardona, M., 1969, “Modulation Spectroscopy”, in “Solid State Physics”, Suppliment 11, Ed. by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York), p.1.

    Google Scholar 

  • Drummond, T. J., Jones, E. D., Hjalmarson, H. P., and Doyle, B. L., 1987, GaAs/InxAl1-x As (0 ≤ x ≤ 0.006) Indirect Bandgap Superlattices, in “Proc. Int. Symp. GaAs and Related Compounds, Las Vegas, Nevada, 1986”, Inst. Phys. Conf. Ser. No. 83, Chapter 6, pp.331–336.,

    Google Scholar 

  • Esaki, L., and Tsu, R, 1970, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Dev., 14: 61.

    Article  Google Scholar 

  • Eppenga, R., and Schuurmans, M. F. H., 1988, Thin [001] and [110] GaAs/AlAs Superlattices: Distinction Between Direct and Indirect Semiconductors, Phys. Rev. B, 38: 3541.

    Article  ADS  Google Scholar 

  • Feldmann, J., Peter, G., Gobel, E. O., Dawson, P., Moore, K., Foxon, C., and Elliott, R. J., 1987, Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells, Phys. Rev. Lett., 59: 2337.

    Article  ADS  Google Scholar 

  • Finkman, E., Sturge, M. D., and Tamargo, M. C., 1986, X-point Excitons in AlAs/GaAs Superlattices, Appl. Phys. Lett., 49: 1299.

    Article  ADS  Google Scholar 

  • Fujimoto, H., Hamaguchi, C., Nakazawa, T., Taniguchi, K., and Imanishi, K., 1989, Crossover of Direct and Indirect Transitions in (GaAs)m/(AlAs)5 Superlattices (m = 1 - 11), J. Phys. Soc. Jpn., 58: 3727.

    Article  ADS  Google Scholar 

  • Fujimoto, H., Hamaguchi, C., Nakazawa, Taniguchi, K., Imanishi, K., Kato, H., and Watanabe, Y., 1990, Direct and Indirect Transition in (GaAs)n/(AlAs)n Superlattices with n = 1 - 15, Phys. Rev. B, 41 (to be published).

    Google Scholar 

  • Garland, J. W., Abad, H., Viccaro, M., and Raccah, M., 1988, Line Shape of the optical dielectric function, Appl. Phys. Lett., 52: 1176.

    Article  ADS  Google Scholar 

  • Glembocki, O. J., and Shanabrook, B. V., 1989, Electromodulation Spectroscopy of Confined Systems, Superlatt. Microstruct., 5: 603.

    Article  ADS  Google Scholar 

  • Gopalan, S., Christensen, N. E., and Cardona, M., 1989, Band-Edge States in Short-Period (GaAs)m/(AlAs)n Superlattices, Phys. Rev. B, 39: 5165.

    Article  ADS  Google Scholar 

  • Hamaguchi, C., Nakazawa, T., Matsuoka, T., Ohya, T., Taniguchi, K., Fujimoto, H., Imanishi, K., Kato, H., and Watanabe, Y., 1990, Direct and Indirect Transition in (GaAs)n/(AlAs)n Superlattices with n = 1 - 15, “SPIE Int. Conf. on Modulation Spectroscopy” (in press).

    Google Scholar 

  • Harrison, W. A., 1981, Total Energies in the Tight-Binding Theory, Phys. Rev. B, 23: 5245.

    ADS  Google Scholar 

  • Ihm, J., 1987, Effects on the Layer Thickness on the Electronic Character in GaAs-AlAs Superlattices, Appl. Phys. Lett., 50: 1068.

    Article  ADS  Google Scholar 

  • Jian-Bai-Xia, 1988, Theoretical Analysis of Electronic Structures of Short-Period Superlattices (GaAs)m/(AlAs)n and Corresponding Alloys Aln/(m+n)Gam/(m+n)As, Phys. Rev. B, 38: 8358.

    Article  ADS  Google Scholar 

  • Kato, H., Okada, Y., Nakayama, M., and Watanabe, Y., 1989, Γ-X Crossover in GaAs/AlAs Superlattices, Solid State Commun., 70: 535.

    Article  ADS  Google Scholar 

  • Miller, R. C., Kleinman, D. A., and Gossard, A. C., 1984, Energy-gap discontinuities and effective masses for GaAs-AlxGa1-xAs quantum wells, Phys. Rev. B, 29: 7085.

    Article  ADS  Google Scholar 

  • Minami, F., Hirata, H., Era, K., Yao, T., and Masumoto, Y., 1987, Localized Indirect Excitons in a Short-period GaAs/AlAs Superlattices, Phys. Rev. B, 36: 2875.

    Article  ADS  Google Scholar 

  • Nakayama, T., and Kamimura, H., 1985, Band Structure of Semiconductor Superlattices with Ultrathin Layers (GaAs)n/(AlAs)n with n = 1, 2, 3, 4, J. Phys. Soc. Jpn., 54: 4726.

    Article  ADS  Google Scholar 

  • Nakazawa, T., Fujimoto, H., Imanishi, K., Taniguchi, K., Hamaguchi, C., Hiyamizu, S., and Sasa, S., 1989, Photoreflectance and Photoluminescence Study of (GaAs)m/(AlAs)5 (m = 3 - 11) Superlattices: Direct and Indirect Transition, J. Phys. Soc. Jpn., 58: 2192.

    Article  ADS  Google Scholar 

  • Nakazawa, T., Matsuoka, T., Ohya, T., Taniguchi, K. Hamaguchi, C., Kato, H., and Watanabe, Y., 1990, Temperature Dependence of the Energy Gaps of (GaAs)n/(AlAs)n Superlattices, “SPIE Int. Conf. on Modulation Spectroscopy” (in press).

    Google Scholar 

  • Newman, K. E., and Dow, D. J., 1984, Theory of deep impurities in silicon-germanium alloys, Phys. Rev. B, 30: 1929.

    Article  ADS  Google Scholar 

  • Pollak, F. H., 1990, Modulation spectroscopy characterization of semiconductors and semiconductor microstructures, Short Course Notes, “SPIE’s 1990 Symposium on Advances in Semiconductors and Superconductors: Physics Toward Device Applications” (in press).

    Google Scholar 

  • Schulman, J. N., and McGill, T. C., 1979, Electronic Properties of the AlAs-GaAs (001) Interface and Superlattice, Phys. Rev. B, 19: 6341. See also references therein.

    Article  ADS  Google Scholar 

  • Seraphin, B. O., 1972, Electroreflectance, “Semiconductors and Semimetals”, Vol. 9, ed. by R. K. Willardson and A. C. Beer (Academic Press, New York), pp. 1–149.

    Google Scholar 

  • Shanabrook, B. V., Glembocki, O. J., and Beard, W. T., 1987, Photorefrectance modulation mechanisms in GaAs-AlxGa1-xAs multiple quantum wells, Phys. Rev. B, 35: 2540.

    Article  ADS  Google Scholar 

  • Shen, H., Parayanthal, P., Pollak, F. H., Tomkiweicz, M., Drummond, T. J., and Schulman, J. N., 1986, Photoreflectance study of GaAs/AlAs superlattices: Fit to electromodulation theory, Appl. Phys. Lett., 48: 653.

    Article  ADS  Google Scholar 

  • Shen, H., Pan, S. H., Pollak, Fred H., Dutta, M., and AuCoin, T. R., 1987, Conclusive evidence for miniband dispersion in the photorefrectance of a GaAs/Ga0.74Al0.26As coupled multiple-quantum-well structure, Phys. Rev. B, 36: 9384.

    Article  ADS  Google Scholar 

  • Vogl, P., Hjarmarson H. P., and Dow, J. D., 1983, A semi-empirical tight-binding theory of the electronic structure of semiconductors, J. Phys. Chem. Solids, 44: 365.

    Article  ADS  Google Scholar 

  • Wei, S.-H., and Zunger, A., 1988, Electronic Structure of Ultrathin (GaAs)n/(AlAs)n [001] Superlattices and the Ga0.5As0.5 Alloy, J. Appl. Phys., 63: 5794.

    Article  ADS  Google Scholar 

  • Yamaguchi, E., 1987, Theory of the DX Centers in III–V Semiconductors and (001) Superlattices, J. Phys. Soc. Jpn., 56: 2835.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamaguchi, C., Matsuoka, T., Taniguchi, K. (1991). Optical Properties of Short Period Superlattices. In: Ferry, D.K., Barker, J.R., Jacoboni, C. (eds) Granular Nanoelectronics. NATO ASI Series, vol 251. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3689-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3689-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3691-2

  • Online ISBN: 978-1-4899-3689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics