Skip to main content

Tunneling Between Constrained Dimensionality Systems

  • Chapter
Granular Nanoelectronics

Part of the book series: NATO ASI Series ((NSSB,volume 251))

  • 312 Accesses

Abstract

Systems of reduced dimensionality became a topic of increased interest during the last few years. To induce a one-dimensional system, a two-dimensional electron gas can be constrained to a thin stripe (“quantum wire”) by etching processes or electrostatic confinement. This confinement results in an additional set of quantized states. The knowledge of these one dimensional (ID) subband energies is one of the basic requirements to understand the physical properties of quantum wires such as the quenching of the quantum hall effect (Roukes et al., 1987), mobility modulations (Ismail et al., 1989) or boundary scattering (Thornton et al., 1989). One effect widely used to determine the ID-energy levels is the magnetic depopulation of the lD-subbands. This was done first by (Berggren et al., 1986) on a split-gate field effect transistor structure. Assuming a parabolic electrostatic confinement, the influence of an additional magnetic field can be analyzed analytically. It was shown (Berggren et al., 1986), that the additional magnetic field increases the ID subband spacing, so that lD-subbands are shifted above the Fermi energy if the magnetic field is increased. Consequently, these subbands are depopulated, resulting in an oscillating behavior of the magneto resistance. In contradiction to the 2D-case, a plot of the oscillation index versus inverse magnetic field (Landau-plot) is not linear and saturates at low magnetic fields. By fitting the experimental results, both the ID electron concentration n1D and the subband energies are determined. From this, the widths of the conducting channels can be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsmeier, J., Sikorsky, Ch., and Merkt, U., 1988, Subband spacings of quasi-one-dimensional inversion channels on InSb, Phys. Rev. B, 37:4314.

    Article  ADS  Google Scholar 

  • Berggren, K. F., and Newson, D. I, 1986, Magnetic depopulation of electronic subbands in low dimensional semiconductor systems and their influence on the electrical resistivity and Hall effect, Semicond. Sci. Technol., 1:327.

    Article  ADS  Google Scholar 

  • Berggren, K. F., Thornton, T. J., Newson, D. J., and Pepper, M., 1986, Magnetic depopulation of ID subbands in a GaAs:AlGaAs Heterojunction, Phys. Rev. Lett., 57:1769.

    Article  ADS  Google Scholar 

  • Berggren, K. F., Roos, G., and van Houten, H., 1988, Characterization of very narrow quasi-one-dimensional channels, Phys. Rev. B, 17:10118.

    Article  ADS  Google Scholar 

  • Brinkop, F., Hansen, W., Kotthaus, J. P., and Ploog, K., 1988, ONe dimensional subbands of narrow electron channels in gated AlGaAs/GaAs hetereojunctions, Phys. Rev. B, 37:6547.

    Article  ADS  Google Scholar 

  • Christanell, R., and Smoliner, J., 1988, New high resolution conductance bridge for tunneling spectroscopy, Rev. Sci. Instrum., 59:1290.

    Article  ADS  Google Scholar 

  • Demel, T., Heitmann, D., Grambow, P., and Ploog, K., 1988, Far infrared response of one-dimensional electronic systems in single and two-layered quantum wires, Phys. Rev. B, 38:12132.

    Google Scholar 

  • Demel, T., Heitmann, D., Grambow, P., and Ploog, K., 1989, DC and far infrared experiments on one-dimensional multi-layered quantum wires, Superlattices and Microstructures, 5:287.

    Article  ADS  Google Scholar 

  • Hansen, W., Horst, M., Kotthaus, J. P., Merkt, U., Sikorsky, Ch., and Ploog, K., 1987, Intersubband resonance in quasi-one-dimensional inversion channels, Phys. Rev. Lett., 58:2586.

    Article  ADS  Google Scholar 

  • Ismail, K., Antoniadis, D. A., and Smith, H. I., 1989, One-dimensional subbands and mobility modulation in GaAs/AlGaAs heterojunctions, Appl. Phys. Lett., 54:1130.

    Article  ADS  Google Scholar 

  • Lakrimi, M., Grassie, A. D. C., Hutchings, K. M., Harris, J.J., and Foxon, C. T., 1989, Quantum size effects in GaAS-GaAlAs heterojunction wires, Semicond. Sci. Technol., 4:313.

    Article  ADS  Google Scholar 

  • Laux, S. E., and Stern, F., 1986, Electron states in narrow gate-induced channels in Si, Appl. Phys. Lett., 49:91.

    Article  ADS  Google Scholar 

  • Laux, S. E., Frank, D. J., and Stern, F., 1988, Quasi-one-dimensional electron states in a split-gate GaAs/AlGaAs heterostructure, Surface Sei., 196:101.

    Article  ADS  Google Scholar 

  • Randall, J. N., Reed, M. A., Moore, T. M., Matyi, R. J., and Lee, J. W., 1988a, Nanostructure fabrication of zero-dimensional quantum dot diodes, J. Vac. Sci. Technol., B6:302.

    Article  Google Scholar 

  • Randall, J. N., Reed, M. A., Matyi, R. J., and Moore, T. M., 1988b, Microstructre fabrication and transport through quantum dots, J. Vac. Sci. Technol., B6:1861.

    Article  Google Scholar 

  • Roukes, M. L., Scherer, A., Allen, S. J., Jr., Craighead, H. G., Ruthen, R. M., Beebe, E. D., and Harbison, J. P., 1987, Quenching of the Hall effect in a one-dimensional wire, Phys. Rev. Lett., 59:3011.

    Article  ADS  Google Scholar 

  • Rundquist, H. J., 1989, Magnetic depopulation of electronic subbands in a narrow two dimensional channel, Semicond. Sci. Technol., 4:455.

    Article  ADS  Google Scholar 

  • Smoliner, J., Gornik, E., and Weimann, G., 1988, Depletion charge measurements by tunneling spectroscopy, Appl. Phys. Lett., 52:2136.

    Article  ADS  Google Scholar 

  • Smoliner, J., Gornik, E., and Weimann, G., 1989a, Direct observation of tunneling between Landau levels in barrier separated two-dimensional electron gas systems, Phys. Rev. B, 39:12937.

    Article  ADS  Google Scholar 

  • Smoliner, J., Demmerle, W., Berthold, G., Gornik, E., Weimann, G., and Schlapp, W., 1989b, Momentum conservation in tunneling proceses between barrier separated 2D-electron gas systems, Phys. Rev. Lett., 63:2116.

    Article  ADS  Google Scholar 

  • Thornton, T. J., Pepper, M., Ahmed, H., Andrews, D., and Davies, G. J., 1986, One dimensional conduction in the 2D electron gas of GaAs-AlGaAs heterojucntions, Phys. Rev. Lett., 56:1198.

    Article  ADS  Google Scholar 

  • Thornton, T. J., Roukes, M. L., Scherer, A., and van de Gaag, B. P., 1989, Boundary scattering in quantum wires, Phys. Rev. Lett., 63:2128.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gornik, E., Smoliner, J., Hirler, F., Weimann, G. (1991). Tunneling Between Constrained Dimensionality Systems. In: Ferry, D.K., Barker, J.R., Jacoboni, C. (eds) Granular Nanoelectronics. NATO ASI Series, vol 251. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3689-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3689-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3691-2

  • Online ISBN: 978-1-4899-3689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics