Advertisement

Spatial Pattern Formation in a Catalytic Surface Reaction: the Faceting of Pt(110) in CO + O2

  • R. Imbihl
Chapter
  • 106 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

The term “dissipative structures” which was introduced by Prigogihe [17] describes a broad class of non-equilibrium systems where a constant flow of energy and/or matter leads to structures ordered in space or time, e.g. causes kinetic oscillations or spatial pattern formation. Temporal oscillations and spatial pattern formation are closely related since the same kinetic instabilities which lead to a periodic variation of the system variables in time may also induce a periodic variation in space. Consequently one often observes spatio-temporal structures, but one may also consider the case of a non-equilibrium structure which is only periodic in space. Such structures which rarely have been observed in chemical reaction systems were first discussed by Turing [20] and have been termed accordingly as “Turing structures”.

Keywords

Phase Transition Scan Tunnelling Microscopy Image Facet Surface Lateral Periodicity Facet Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Behm, R.J., Thiel, P.A., Norton, P.R. & Ertl, G. (1983). J. Chem. Phys. 78, 17437; 117448.ADSGoogle Scholar
  2. [2]
    Cox, M.P., Ertl, G. & Imbihl, R. (1985). Phys. Rev. Lett. 54, 1725.ADSCrossRefGoogle Scholar
  3. [3]
    Eiswirth, M. & Ertl, G. (1986). Surf. Sci. 177, 90.ADSCrossRefGoogle Scholar
  4. [4]
    Eiswirth, M., Möller, P., Wetzl, K., Imbihl, R. & Ertl, G. (1989). J. Chem. Phys. 90, 510.ADSCrossRefGoogle Scholar
  5. [5]
    Eiswirth, M., Krischer, K. & Ertl, G., submitted to Appl. Phys. A. Google Scholar
  6. [6]
    Engel, T. & Ertl, G. (1979). Adv. Catal. 28, 1.CrossRefGoogle Scholar
  7. [7]
    Falta, J., Imbihl, R. & Henzler, M., submitted to Phys. Rev. Lett. Google Scholar
  8. [8]
    Fery, P., Moritz, W. & Wolf, D. (1988). Phys. Rev. B38, 7275.ADSCrossRefGoogle Scholar
  9. [9]
    Gritsch, T., Coulman, D., Behm, R.J. & Ertl, G. (1989). Phys. Rev. Lett. 63, 1086.ADSCrossRefGoogle Scholar
  10. [10]
    Hofmann, P., Bare, S.R. & King, D.A. (1982). Surf. Sci. 117, 245.ADSCrossRefGoogle Scholar
  11. [11]
    Imbihl, R., Cox, M.P. & Ertl, G. (1986). J. Chem. Phys. 84, 3519.ADSCrossRefGoogle Scholar
  12. [12]
    Imbihl, R., Ladas, S. & Ertl, G. (2988). Surf. Sci. 206, L903.CrossRefGoogle Scholar
  13. [13]
    Imbihl, R. (1989). In Optimal Structures in Heterogeneous Reaction Systems, Plath, P.J. (ed.), Springer Series in Synergetics. Springer: Berlin.Google Scholar
  14. [14]
    Imbihl, R., Reynolds, A.E. & Kaletta, D., in preparation.Google Scholar
  15. [15]
    Ladast S., Imbihl, R. & Ertl, G. (1988). Surf. Sci. 197, 153.ADSCrossRefGoogle Scholar
  16. [16]
    Ladas, S. , Imbihl, R. & Ertl, G. (1988). Surf. Sci. 198, 42.ADSCrossRefGoogle Scholar
  17. [17]
    Nicolis, G. & Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems. Wiley: New York.zbMATHGoogle Scholar
  18. [18]
    Niehus, H. (1984). Surf. Sci. 145, 407.ADSCrossRefGoogle Scholar
  19. [19] a)
    Rotermund, H.H., Jakubith, S., von Oertzen, A. & Ertl, G. (1989). J. Chem. Phys. 91, 4942.ADSCrossRefGoogle Scholar
  20. [19] b)
    Rotermund, H.H., Engel, W., Kordesch, M. & Ertl, G. (1990). Nature 343, 355.ADSCrossRefGoogle Scholar
  21. [20]
    Turing, A.M. (1952). Trans. Roy. Soc. Lond. B237, 37.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. Imbihl
    • 1
  1. 1.Fritz-Haber InstitutMax-Planck-GesellschaftBerlin 33West Germany

Personalised recommendations