Advertisement

A New Pattern of Spreading Excitations in Cellular Automata: Models for Heterogeneous Catalytic Reactions

  • P. J. Plath
Chapter
  • 105 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Heterogeneous catalytic reactions are complex chemical systems. This is even the case for the oxidation of CO which looks simple with respect to the mechanistic overall formula but it is of high complexity. There are conditions under which this reaction occurs in an oscillatory state[1–8] or even in a chaotic regime [9–11]. The patterns which arise during CO-oxidation by means of palladium support catalysts possess self-similar time series of CO-conversion and CO2-production.

Keywords

Cellular Automaton Transformation Rule Elementary Reactor Palladium Particle Heterogeneous Catalytic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beusch, H., Fieguth, P. & Wicke, E. (1972). Chemie-Ing. Techn. 44, 445–451.CrossRefGoogle Scholar
  2. [2]
    Plichta, R.T. & Schmitz, R.A. (1979). Chem. Eng. Commun. 3, 387–398.CrossRefGoogle Scholar
  3. [3]
    Rathausky, J. & Hlavacek, V. (1981). J. Chem. Phys. 75(2), 749–756.ADSCrossRefGoogle Scholar
  4. [4]
    Wicke, E. (1983). Nova Acta Leopoldina 55(257), 3–23.Google Scholar
  5. [5]
    Ertl, G., Norton, P.R. & Rüstig, J. (:1982). Phys. Rev. Lett. 49, 177–180.ADSCrossRefGoogle Scholar
  6. [6]
    Varhhese, P., Carberry, J.J. & Wolf, E.E. (1978). J. Catalysis 55, 76–87.CrossRefGoogle Scholar
  7. [7]
    Imbihl, R., Cox, M.P. & Ertl, G. (1986). J. Chem. Phys. 84(6), 3519–3534.ADSCrossRefGoogle Scholar
  8. [8]
    Slin’ko, M.M., Jaeger, N.I. & Svensson, P. (1989). J. Catalysis 118, 349–359.CrossRefGoogle Scholar
  9. [9]
    Razon, L.F., Chang, S.-M. & Schmitz, R. (1986). Chem. Eng. Sci. 41(6), 1561–1576.CrossRefGoogle Scholar
  10. [10]
    Jaeger, N.I., Möller, K. & Plath, P.J. (1986). J. Chem. Soc. Faraday Trans. I 82, 3315–3330.CrossRefGoogle Scholar
  11. [11]
    Plath, P.J., Möller, K. & Jaeger, N.I. (1988). J. Chem. Soc. Faraday Trans. I. 84, 1715–1771.Google Scholar
  12. [12]
    Plath, P.J. (1989). Proceedings of the 4th IPSO-Konferenz in Rostock. Google Scholar
  13. [13]
    Plath, P.J., Meyer, N. Hoth, Th. & Woydack, D. Submitted to Z. phys. Chem. Google Scholar
  14. [14]
    Moller, K. (1984). Thesis: Untersuchung des dynamischen Verhaltens der CO-Oxidation an Pd-Tragerkatalysatoren; Fachbereich Biologie/Chemie der Universität Bremen.Google Scholar
  15. [15]
    Svensson, P. (1988). Thesis: Die Oxidation von Kohlenmonoxid an palladiumdotierten Zeolithen unter Einfluss einer pulsformigen Eduktzufuhr variabler Zusammensetzung; Fachbereich Biologie/Chemie der Universität Bremen.Google Scholar
  16. [16]
    Kleine, A., Ryder, P.L., Jaeger, N.I. & Schulz-Ekloff, G. (1986). J. Chem. Soc. Faraday Trans. I. 82, 205–212.CrossRefGoogle Scholar
  17. [17]
    Plath, P.J. (ed.) (1989). In Optimal Structures in Heterogeneous Reaction Systems, p. 1–25. Springer Series in Synergetics, Vol. 44. Springer-Verlag: Berlin, Heidelberg, New York.Google Scholar
  18. [18]
    McKinney, P.V. (1933). J. Am. Chem. Soc. 55, 3626.CrossRefGoogle Scholar
  19. [19]
    Imbihl, R. (1984). Thesis: Nichtgleichgewichs- Phasenuhergange hei der katalytischen Oxidation von CO an Pt(100); Phys. Chem. Inst, der Ludwigs-Maximilian Universität, München.Google Scholar
  20. [20]
    McKinney, P.V. (1932). J. Am. Chem. Soc. 54, 4498.CrossRefGoogle Scholar
  21. [21]
    Palazow, A., Chang, C.C. & Kokes, R.J. (1978). J. Catal. 36, 338.CrossRefGoogle Scholar
  22. [22]
    Cambell, C.T., Foyt, D.C. & White, J.M. (1977). J. Phys. Chem. 81, 491.CrossRefGoogle Scholar
  23. [23]
    Ertl, G. & Koch, J. (1972). In Adsorption-Desorptio Phenomena, Ricca, F. (ed.), p. 345. Academic Press: New York.Google Scholar
  24. [24]
    Imbihl, R. (1989). In Optimal Strucutres in Heterogeneous Reaction Systems, Vol. 44, Plath, P.J. (ed.), p. 26. Springer-Verlag: Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  25. [25]
    Markus, M. (1989). Lecture at the NATO Advanced Research Workshop, Nonlinear Wave Processes in Excitable Media, Leeds; see also this volume.Google Scholar
  26. [26]
    Gerhardt, M. & Schuster, H. (1989). Physica D36, 209–221.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Gerhardt, M. (1987). Thesis: Mathematische Modellierung der Dynamik der heterogen katalysierten Oxidation von Kohlenmonoxid: Numerische Behandlung eines diskreten mathematischen Modells von über Diffusion miteinander gekopopelter chemischer Speicher; Fachbereich Biologie/ Chemie der Universität Bremen.Google Scholar
  28. [28]
    Pfeifer, P. & Avnir, D. (1983). J. Chem. Phys. 79(7), 3558–3565.ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    Avnir, D., Farin, D. & Pfeifer, P. (1983). J. Chem. Phys. 79(7), 3566–3571.ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    Farin, D. & Avnir, D. (1987). J. Phys. Chem. 91, 5517–5521.CrossRefGoogle Scholar
  31. [31]
    Farin, D. & Avnir, D. (1988). J. Am. Chem. Soc. 110, 2039–2045.CrossRefGoogle Scholar
  32. [32]
    Schmidt, P.W. (1989). In The Fractal Approach to Heterogeneous Chemistry, Avnir, D. (ed.), p. 67–79. John Wiley & Sons Ltd.: Chichester, New York, Brisbane, Toronto.Google Scholar
  33. [33]
    Kaye, B.H. (1989). A Random Walk Through Fractal Dimension. Verlag Chemie: Weinheim.Google Scholar
  34. [34]
    Spindler, H. & Becker, K. (1987). Chem. Techn. 39, 139.Google Scholar
  35. [35]
    Gerhardt, M., Schuster, H. & Tyson, J.J. (1990). Preprint; to appear in Science. Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. J. Plath
    • 1
  1. 1.Institut für Angewandte und Physikalische ChemieUniversität BremenBremen 33Germany

Personalised recommendations