Advertisement

The Simulation of Chemical Waves in Excitable Reaction-Diffusion-Convection Systems by Finite Difference and Finite Element Methods

  • Th. Plesser
  • R. D. Kingdon
  • K. H. Winters
Chapter
  • 107 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Waves formed by the propagation of gradients in a supporting medium are an ubiquitous phenomenon in the gaseous, liquid and solid phases of matter. The wave motion and shape are maintained by a supply of energy either internal or external to the system. Familiar examples are water waves and acoustic waves coupled to mechanical energy sources. In recent years a new wave phenomenon has become the focus of scientific interest, namely the propagation of concentration gradients in chemical solutions. Here the medium is active rather than passive, with the internal energy source being provided by the participating chemical reactions. The most thoroughly investigated example of this phenomenon occurs during the oxidative bromination of an organic substrate in the presence of a catalyst. This process, the so-called Belousov-Zhabotinskii (BZ) reaction, was discovered in the fifties by the Russian Belousov who observed in a well-stirred reaction mixture the periodic variation of the concentration of the oxidized form of the cerium redox couple Ce /Ce . Later, Zhabotinskii investigated the underlying reaction mechanism and published results of the first experiments on moving waves in a thin layer of the mixture [1].

Keywords

Dispersion Relation Excitable Medium Malonic Acid Marangoni Convection Singular Perturbation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zaikin, A.N. & Zhabotinskii, A.M. (1970). Nature 224, 535–532.ADSCrossRefGoogle Scholar
  2. [2]
    Field, R.J. & Burger, M. (eds.) (1985). Oscillations and Traveling Waves in Chemical Systems. Wiley: New York.Google Scholar
  3. [3]
    Ross, J., Müller, S.C. & Vidal, C. (1988). Science 240, 460–465.ADSCrossRefGoogle Scholar
  4. [4]
    Field, R.J. & Noyes, R.M. (1974). J. Chem. Phys. 60, 1877–1884.ADSCrossRefGoogle Scholar
  5. [5]
    Tyson, J.J. (1985). In Oscillations and Traveling Waves in Chemical Systems, Field, R.J. & Burger, M. (eds.), pp. 93–144. Wiley: New York.Google Scholar
  6. [6]
    Murray, J.D. (1976). J. Theoret. Biol. 56, 329–353.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Tyson, J.J. & Fife, P.C. (1980). J. Chem. Phys. 73, 2224–2237.ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    Rovinsky, A.B. (1986). J. Phys. Chem. 90, 217–219.CrossRefGoogle Scholar
  9. [9]
    Zykov, V.S. & Petrov, A.A. (1977). Biophysics 22, 307–314.Google Scholar
  10. [10]
    Keener, J.P. & Tyson, J.J. (1986). Physica 21D, 307–324.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Tyson, J.J. & Keener, J.P. (1988). Physica 32D, 327–361.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Zykov, V.S. (1988). Modelling of Wave Processes on Excitable Media. Winfree, A.T. (transi. & ed.). Manchester University Press.Google Scholar
  13. [13]
    Wood, P.M. & Ross, J. (1985). J. Chem. Phys. 82, 1924–1936.ADSCrossRefGoogle Scholar
  14. [14]
    Müller, S.C., Plesser, Th. & Hess, B. (1986). Naturwissenschaften 73, 165–179.ADSCrossRefGoogle Scholar
  15. [15]
    Pagola, A. & Vidal, C. (1987). J. Phys. Chem. 91, 501–503.CrossRefGoogle Scholar
  16. [16]
    Müller, S.C., Plesser, Th. & Hess, B. (1987). Physica 24D, 71–86;Google Scholar
  17. [16a]
    Müller, S.C., Plesser, Th. & Hess, B. (1987). Physica 24D, 87–96.Google Scholar
  18. [17]
    Nagy-Ungvarai, Zs., Tyson, J.J. & Hess, B. (1989). J. Phys. Chem. 93, 707–713.CrossRefGoogle Scholar
  19. [18]
    Nagy-Ungvarai, Zs. , Müller, S.C., Tyson, J.J. & Hess, B. (1989). J. Phys. Chem. 93, 2760–2764.CrossRefGoogle Scholar
  20. [19]
    Plesser, Th., Miike, H., Müller, S.C. & Winters, K. H. (1987). Harwell Laboratory Report TP.1267. Google Scholar
  21. [20]
    Miike, H., Müller, S.C. & Hess, B. (1988). Phys. Rev. Lett. 61, 2109–2112.ADSCrossRefGoogle Scholar
  22. [21]
    Curtis, A.R. & Sweetenham, W.P. (1987). FACSIMILE/CHEKMAT User’s Manual, Harwell Laboratory, Oxfordshire. Google Scholar
  23. [22]
    Winters, K.H. (1985). ENTWIFE User Manual, Harwell Laboratory Report R.11577. Google Scholar
  24. [23]
    Nagy-Unvarai, Zs. , Müller, S.C., Plesser, Th. & Hess, B. (1988). Naturwissenschaften 75, 87–89.ADSCrossRefGoogle Scholar
  25. [24]
    Gear, C.W. (1971). Numerical Initial Value Problems. Prentice Hall Inc.: Englewood Cliffs, New Jersey.zbMATHGoogle Scholar
  26. [25]
    Cliffe, K.A., Wheeler, A.A. & Winters, K.H. (1989). Harwell Laboratory Report M.3731. Google Scholar
  27. [26]
    Dockery, J.D., Keener, J.P. & Tyson, J.J. (1988). Physica 30D, 177–191.zbMATHGoogle Scholar
  28. [27]
    Manoranjan, V.S. (1984). In Mathematics in Medicine and Biomechanics, pp. 73–80, Roach, R.F. (ed.). Shiva Publishing Ltd.: Nantwich.Google Scholar
  29. [28]
    Rinzel, J. & Terman, D. (1982). SIAM J. Appl. Math. 42, 1111–1137.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [29]
    Manoranjan, V.S. & Mitchell, A.R. (1983). J. Math. Biol. 16, 251–260.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Th. Plesser
    • 2
  • R. D. Kingdon
    • 1
  • K. H. Winters
    • 1
  1. 1.Theoretical Physics DivisionHarwell LaboratoryDidcot, OxonUK
  2. 2.Max-Planck-Institut für ErnährungsphysiologieDortmundWest Germany

Personalised recommendations