Advertisement

Excyclon Dynamics

  • E. Dulos
  • J. Boissonade
  • P. De Kepper
Chapter
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

We use an open two-dimensional spatial reactor, to create sustained crescent-shaped excitation waves (“excyclons”) propagating in the same azimuthal direction in a thin annular layer of BZ medium. They can produce formerly unknown two-dimensional wavetrain patterns. Excyclons spread evenly around the annulus, as is often the case for pulse trains on ring fibres. However, depending on their number, the resulting rotating wavetrain structures may present either the highest symmetry or topological defects that develop in the radial direction. These defects may be locked in relative position or permanently exchanged from one excyclon to another. A dispersion relation is established. Numerical simulations based on a two-variable Tyson-Fife model of the reaction exhibit good qualitative agreement with experimental observations.

Keywords

Dispersion Relation Dispersion Curve Wave Pattern Excitable Medium Topological Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Field, R.J. & Burger, M. (eds.) (1985). Oscillating and travelling waves in chemical systems. Wiley.Google Scholar
  2. [2]
    Markus, M., Miller, S.C. & Nicolis, G. (eds.) (1987). From chemical to biological organization. Springer.Google Scholar
  3. [3]
    Vidal, C. & Pacault, A. (1982). In Evolution of order and chaos, Haken, H. (ed.). Springer.Google Scholar
  4. [4]
    Zaikin, A.N. & Zhabotinskii, A.M. (1970). Nature 225, 535.ADSCrossRefGoogle Scholar
  5. [5]
    Zhabotinskii, A.M. & Zaikin, A.N. (1973). J. Theor. Biol. 40, 45.CrossRefGoogle Scholar
  6. [6]
    Hanusse, P., Vidal, C. & Pagola, A. In ref. [2], p. 99.Google Scholar
  7. [7]
    Smoes, M.L. (1980). In Dynamics of synergetic systems, Haken, H. (ed.), p. 80. Springer.CrossRefGoogle Scholar
  8. [8]
    Pagola, A., Ross, J. & Vidal, C. (1988). J. Phys. Chem. 92, 163.CrossRefGoogle Scholar
  9. [9]
    Agladze, K.I. & Krinski, V.I. (1982). Nature 296, 424.ADSCrossRefGoogle Scholar
  10. [10]
    Müller, S.C., Plesser, T. & Hess, B. (1987). Physica D24, 71.Google Scholar
  11. [11]
    Foerster, P., Müller, S. & Hess, B. (1988). Science 241, 685.ADSCrossRefGoogle Scholar
  12. [12]
    Nagy-Ungvarai, Z. , Müller, S.C., Tyson, J.J. & Hess, B. (1989). J. Phys. Chem. 93, 2760.CrossRefGoogle Scholar
  13. [13]
    De Kepper, P., Epstein, I.R., Kustin, K. & Orban, M. (1982). J. Phys. Chem. 86, 170.CrossRefGoogle Scholar
  14. [14]
    Nagy-Ungvarai, Z. , Müller, S.C. & Hess, B. (1989). Chem. Phys. Lett. 156, 433.ADSCrossRefGoogle Scholar
  15. [15]
    Sevcikova, A. & Marek, M. (1983). Physica D9, 140.Google Scholar
  16. [16]
    Avnir, D. & Kagan, M. (1984). Nature 307, 717.ADSCrossRefGoogle Scholar
  17. [17]
    Nagypal, I., Bazsa, G. & Epstein, I.R. (1986). J.A.C.S. 108, 3635.CrossRefGoogle Scholar
  18. [18]
    Micheau, J.C., Gimenez, M., Borckmans, P. & Dewell, G. (1983). Nature 305, 43.ADSCrossRefGoogle Scholar
  19. [19]
    Nicolis, G. & Prigogine, I. (1977). Self-organization in nonequilibrium chemical systems. Wiley.Google Scholar
  20. [20]
    Boissonade, J. (1988). In Dynamic and stochastic processes. Theory and applications. Lima, R., Streit, L. & Videla Mendes, R. (eds). Lisbonne Workshop. Lecture Notes in Physics, Springer.Google Scholar
  21. [21]
    Ouyang, Q., Boissonade, J., Roux, J.C. & De Kepper, P. (1989). Phys. Lett. 134, 282.CrossRefGoogle Scholar
  22. [22]
    Tarn, W.Y., Vastano, J.A., Swinney, H.L. & Horsthemke, W. (1988). Phys. Rev. Lett. 61, 2163.ADSCrossRefGoogle Scholar
  23. [23]
    Boissonade, J., Ouyang, Q., Arneodo, A., Elezgaray, J., Roux, J.C. & De Kepper, P. In these Proceedings.Google Scholar
  24. [24]
    Tarn, W.Y., Horsthemke, W., Noszticzius, Z. & Swinney, H.L. (1988). J. Chem. Phys. 88, 3395.ADSCrossRefGoogle Scholar
  25. [25]
    Noszticzius, Z., Horsthemke, W., McCormick, W.D., Swinney, H.L. & Tarn, W.Y. (1987). Nature 329, 619.ADSCrossRefGoogle Scholar
  26. [26]
    Miller, R.N. & Rinzel, J. (1981). Biophys. J. 34, 227.ADSCrossRefGoogle Scholar
  27. [27]
    Rinzel, J. & Keller, B. (1973). Biophys. J. 13, 1313.ADSCrossRefGoogle Scholar
  28. [28]
    Karfunkel, H.R. & Kahlert, C. (1977). J. Math. Biol. 4, 183.CrossRefzbMATHGoogle Scholar
  29. [29]
    Tyson, J.J. & Fife, P.C. (1980). J. Chem. Phys. 73 2224.ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    Keener, J.P. & Tyson, J.J. (1986). Physica D21, 307.zbMATHMathSciNetGoogle Scholar
  31. [31]
    Dockery, J.D., Keener, J.P. & Tyson, J.J. (1987). Physica D30, 177.Google Scholar
  32. [32]
    Jahnke, W., Skaggs, W.E. & Winfree, A.T.(1989). J. Chem. Phys. 93, 740.CrossRefGoogle Scholar
  33. [33]
    Arshavskii, Y.I., Berkinblit, M.B. & Dunin-Berkovskii, V.I. (1965). Biophysics 10, 1160.Google Scholar
  34. [34]
    Ramon, F., Vergara, J. & Moore, J.W. (1973). Biophys. J. 13, 131 (Abstr.).CrossRefGoogle Scholar
  35. [35]
    Donati, F. & Kunov, H. (1979). IEEE Trans. Biomed. Eng. BME 23, 23.Google Scholar
  36. [36]
    George, S.A. (1977). Biol. Cybernetics 26, 209.CrossRefGoogle Scholar
  37. [37]
    Field, R.J. In ref. [1], Ch. 2, 55.Google Scholar
  38. [38]
    Tyson, J.J. In ref. [1], Ch. 3, 93.Google Scholar
  39. [39]
    Nandapurkar, P.J. & Winfree, A.T. (1987). Physica D29, 69;zbMATHMathSciNetGoogle Scholar
  40. [39a]
    Lugosi, E. & Winfree, A.T. (1988). J. Comp. Chem. 9, 689.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. Dulos
    • 1
  • J. Boissonade
    • 1
  • P. De Kepper
    • 1
  1. 1.Centre de Recherche Paul Pascal/CNRSUniversité de Bordeaux IPessacFrance

Personalised recommendations