Advertisement

The Effect of Cross Mass (Soret) Transport on the Initiation, Propagation and Stability Properties of a Combustion Wave

  • P. L. Garcia-Ybarra
Chapter
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Soret, or thermal diffusion, transport denotes the cross mass transport due to the local temperature gradient, in contrast to the more familiar Fick transport due to a concentration gradient. The phenomenon, first reported by Ludwig in 1856, takes its name from Ch. Soret, the Swiss physicist who during the 1870s carried out a series of experiments to measure the salt concentration differences appearing in some initially homogeneous liquid solutions subjected to a temperature gradient. The reciprocal phenomenon, a heat flux induced by a concentration gradient, was observed almost simultaneously by Dufour in 1872. (The references of these pioneering works can be found in [10].)

Keywords

Thermal Diffusion Flame Front Lewis Number Premix Flame Flame Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramowitz, M. & Stegun, I. (1972). In Handbook of Mathematical Functions, Chapter 19. Dover.zbMATHGoogle Scholar
  2. [2]
    Aitken, J. (1884). Collected Works. Trans. Roy. Soc. Edinb. 32, 84–113.Google Scholar
  3. [3]
    Bush, W.B. & Fendell, F.E. (1970). Asymptotic Analysis of Laminar Flame Propagation for General Lewis Number. Combust. Sci. Tech. 1, 421–428.CrossRefGoogle Scholar
  4. [4]
    Chapman, S. (1916). On the Law of the Distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas. Phil. Trans. Roy. Soc. A 216, 279.ADSCrossRefGoogle Scholar
  5. [5]
    Clavin, P. & Williams, F.A. (1982). Effects of Molecular Diffusion and of Thermal Expansion on the Structure and Dynamics of Premixed Flames in Turbulent Flows of Large Scale and Low Intensity. J. Fluid. Mech. 116, 251–282.ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    Clavin, P. & Garcia-Ybarra, P. (1983). The Influence of the Temperature Dependence of Diffusivities on the Dynamics of Flame Fronts. J. Theor. App. Mech. 2, 245–263.zbMATHGoogle Scholar
  7. [7]
    Clavin, P. & Joulin, G. (1983). Premixed Flames in Large Scale and High Intensity Turbulence Flow. J. Phys. Lettres 44, 11–12.Google Scholar
  8. [8]
    Clavin, P. (1985). Dynamical Behaviour of Premixed Flame Fronts in Laminar and Turbulent Flows. Prog. Energy Combust. Sci. 11, 1–59.CrossRefGoogle Scholar
  9. [9]
    de Groot, S.R. (1945). L’Effet Soret, Diffusion Thermique dans les Phases Condensées. North Holland.Google Scholar
  10. [10]
    de Groot, S.R. & Mazur, P. (1984). Non-Equilibrium Thermodynamics. Dover.Google Scholar
  11. [11]
    Enskog, D. (1917). Kinetische Theorie der Vorgänge in massig verdünten Gasen. Inaug. Dissertation. Uppsala.Google Scholar
  12. [12]
    Ferziger, J.H & Kaper, H.G. (1972). Mathematical Theory of Tansport Processes in Gases. North Holland.Google Scholar
  13. [13]
    Frankel, M.L. & Sivashinsky, G.I. (1982). The Effect of Viscosity on Hydrodynamic Stability of a Plane Flame Front. Combust. Sci. Tech. 29, 207–224.CrossRefGoogle Scholar
  14. [14]
    Fristrom, R.M. & Monchick, L. (1988). Two Simple Approximations to the Thermal Diffusion Factor and their Applications to Flame Studies. Combust. Flame 71, 89–99.CrossRefGoogle Scholar
  15. [15]
    Garcia-Ybarra, P. & Clavin, P. (1981). Cross-Transport Effects in Nonadiabatic Premixed Flames. Prog. Astro. Aero. 74, 463–482.Google Scholar
  16. [16]
    Garcia-Ybarra, P. (1982). Estudio de las Propiedades Difusivas de una Llama de Premezcla y de su Influencia sobre la Estabilidad de la Propagacion Plana Estacionaria. Thesis, U.N.E.D. Madrid. Google Scholar
  17. [17]
    Garcia-Ybarra, P., Nicoli, C. & Clavin, P. (1984). Soret and Dilution Effects on Premixed Flames. Combust. Sci. Tech. 42, 87–109.CrossRefGoogle Scholar
  18. [18]
    Garcia-Ybarra, P. (1986). Flame Front Stability with General Intermolecular Interaction Potential. Prog. Astro. Aero. 95, 115–128.Google Scholar
  19. [19]
    Garcia-Ybarra, P. & Borghi, R. (1986). Stability Study of an Oblique Flame Front Model. Prog. Astro. Aero. 105, 296–319.Google Scholar
  20. [20]
    Garcia-Ybarra, P. & Borghi, R. (1986). Étude de la Stabilité des Flammes Premelangees Obliques. J. Theor. App. Mech. Special issue, 157–172.Google Scholar
  21. [21]
    Garcia-Ybarra, P. & Rosner, D.E. (1989). Thermophoretic Properties of Nonspherical Particles and Large Molecules. AIChEJ 35, 139–147.CrossRefGoogle Scholar
  22. [22]
    Garcia-Ybarra, P. & Castillo, J. Influence of Thermal Diffusion on Combustible Gas Ignition by a Hot Plate. Proc. 3rd Int. Seminar on Flame Structure. Nauka: Moscow, in press.Google Scholar
  23. [23]
    Garcia-Ybarra, P. & Castillo, J. (1989). Fiat Plate Boundary Layer Ignition with Fuel Thermal Diffusion. Prog. Astro. Aero. , submitted.Google Scholar
  24. [24]
    Joulin, G. & Clavin, P. (1979). Linear Stability Analysis of Non-Adiabatic Flames: Diffusional-Thermal Model. Combust. Flame 35, 139–153.CrossRefGoogle Scholar
  25. [25]
    Joulin, G. (1985). On Point Source Initiation. In Combust ion and Nonlinear Phenomena, Clavin, Larrouturou & Pelcé (eds.), pp. 29–50. Les Editions de Physique. Les Ullis.Google Scholar
  26. [26]
    Mendez, F., Trevino, C. & Linan, A. (1986). Premixed Combustion in Boundary Layers for Moderate Values of the Zeldovich Numbers. Combust. Sci. Tech. 48, 129–149.CrossRefGoogle Scholar
  27. [27]
    Nayfeh, A. (1973). Perturbation Methods. John Wiley & Sons.zbMATHGoogle Scholar
  28. [28]
    Pelcé, P. & Clavin, P. (1982). Influence of Hydrodynamics and Diffusion upon the Stability Limits of Laminar Premixed Flames. J. Fluid Mech. 124, 219–237.ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    Pelce, P. (1985). Effects of Gravity upon Propagation of Flames in Tubes. J. Physique 46, 503–510.CrossRefGoogle Scholar
  30. [30]
    Rosner, D.E. (1980). Thermal (Soret) Diffusion Effects on Interfacial Mass Transport Rates. PhysicoChemical Hydrodynamics 1, 159–185.ADSGoogle Scholar
  31. [31]
    Rosner, D.E. (1986). Transport Processes in Chemically Reacting Flow Systems. Butterworths.Google Scholar
  32. [32]
    Schlichting, H. (1968). Boundary Layer Theory. McGraw Hill.Google Scholar
  33. [33]
    Sivashinsky, G.I. (1977). Diffusional Thermal Theory of Cellular Flames. Combust. Sci. Tech. 15, 137–145.CrossRefGoogle Scholar
  34. [34]
    Tyndall, J. (1870). Proc. R. Instn. Gt. Br. 6, 3.Google Scholar
  35. [35]
    Williams, F.A. (1985). Combustion Theory. Benjamin/Cummings.Google Scholar
  36. [36]
    Zeldovich, Ya.B. & Frank-Kamenetski, D.A. (1938). A Theory of Thermal Propagation of Flame. Acta Phys. USSR IX, 341–350.Google Scholar
  37. [37]
    Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B. & Makhviladze, G.M. (1985). The Mathematical Theory of Combustion and Explosion. Consultants Bureau.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. L. Garcia-Ybarra
    • 1
  1. 1.Dept. Fisica FundamentalUNEDMadridSpain

Personalised recommendations