Three Dimensional Vortices in Active Media

  • A. V. Panfilov
Part of the NATO ASI Series book series (NSSB, volume 244)


A short survey of the results of numerical investigation of the dynamics of 3-D vortices in excitable media on the FitzHugh-Nagumo type model is presented. The computational problems of 3-D numerical experiments are discussed. The dynamics of the scroll ring with an ideal circular and arbitrary untwisted filament, the properties of the twisted scroll wave and twisted scroll ring are considered. In the final section, comparison between the theory and the experiment is done.


Active Medium Vortex Ring Excitable Medium Spiral Wave Filament Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agladze, K.I., Panfilov, A.V. & Rudenko, A.N. (1988). Nonstationary rotation of spiral waves: three-dimensional effect. Physica 29D, 409–415.MathSciNetGoogle Scholar
  2. [2]
    Agladze, K.I., Kuhnert, L., Linde, H., Krinsky, V.I. & Panfilov, A.V. Three-dimensional vortex with a spiral filament in a chemical active medium. Physica D to appear.Google Scholar
  3. [3]
    Agladze, K.I., Kocharjan, R.A. & Krinsky, V.I. The direct observation of the collapse of the scroll rings in chemical active medium. Physica D, submitted.Google Scholar
  4. [4]
    Biktashev, V.N. (1989). Interaction of a 3-D autowave vortex and external waves. Preprint NCBI, Pushchino, 24p.Google Scholar
  5. [5]
    Braznik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1987). Vortex rings in distributed excitable media. ZETP 93, 1725–1736.Google Scholar
  6. [6]
    Ding da-fu (1988). A plausible mechanism for the motion of untwisted scroll rings in excitable media. Physica 32D, 471–487.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Field, R.J., Noyes, R.M. (1974). Oscillations in Chemical Systems, Part 4. Limit Cycle Behavior in a model of a real Chemical reaction. J.Chem. Phys. 60, 1877–1884.ADSCrossRefGoogle Scholar
  8. [8]
    Jahnke, W., Henze, Ch., Winfree, A.T. (1988). Chemical vortex dynamics in three-dimensional excitable media. Nature 366, 662–665.ADSCrossRefGoogle Scholar
  9. [9]
    Keener, J.P. & Tyson, J.J. (1988). The motion of untwisted untorted scroll waves in Belousov-Zhabotinsky reagent. Science 239, 1284–1286.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Keener, J.P. (1988). The dynamics of three-dimensional scroll waves in excitable media. Physica 31D, 269–276.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Keener, J.P. Knotted Scroll Wave Filaments in Excitable Media. Physica D, in press.Google Scholar
  12. [12]
    Keener, J.P. Knotted Vortex filament. In press.Google Scholar
  13. [13]
    Krinsky, V.I. (1984). Autowaves: results, problems, outlooks. In: Self-Organization. Autowaves and Structures Far from Equilibrium, V.I. Krinsky (ed.). Springer-Verlag Heidelberg, 9–19.CrossRefGoogle Scholar
  14. [14]
    Medvinsky, A.B. A.V., Panfilov, A.V & Pertsov, A.M. (1984). Properties of rotating waves in three dimensions. Scroll rings in myocard. In Self-Organization. Autowaves and Structures Far from Equilibrium, V.L. Krinsky (ed.). Springer-Verlag Heidelberg, 195–199.CrossRefGoogle Scholar
  15. [15]
    Müller, S.C. & Plesser, Th. Dynamics of spiral centers in the ferroin catalyzed Belousov-Zhabotinsky reaction, paper in this volume.Google Scholar
  16. [16]
    Nandapurkar, P.J. & Winfree, A.T. (1987). A computational study of twisted linked scroll waves in excitable media. Physica 29D, 69–83.zbMATHMathSciNetGoogle Scholar
  17. [17]
    Nandapurkar, P.J. & Winfree, A.T. (1989). Dynamical stability of untwisted scroll rings in excitable media. Physica 35D, 277–288.zbMATHMathSciNetGoogle Scholar
  18. [18]
    Nicolis, G. & Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. Wiley: New York.Google Scholar
  19. [19]
    Panfilov, A.V. & Pertsov, A.M. (1984). Vortex ring in three-dimensional active medium in reaction-diffusion system. Dokl. AN. SSSR 274, 1500–1503.Google Scholar
  20. [20]
    Panfilov, A.V., Rudenko, A.N. & Pertsov, A.M. (1984). Twisted scroll waves in three-dimensional active media. Dokl. AN. SSSR 279, 1000–1002.Google Scholar
  21. [21]
    Panfilov, A.V., Rudenko, A.N. & Pertsov, A.M. (1984). Twisted scroll waves in three-dimensional active media. In Self-Organization. Autowaves and Structures Far from Equilibrium, V.I. Krinsky (ed.). Springer-Verlag: Heidelberg, 103–105.CrossRefGoogle Scholar
  22. [22]
    Panfilov, A.V. & Winfree, A.T. (1985). Dynamical simulation of twisted scroll rings in three-dimensional excitable media. Physica 17D, 323–330.MathSciNetGoogle Scholar
  23. [23]
    Panfilov, A.V., Rudenko, A.N. & Winfree, A.T. (1985). Twisted scroll rings in three-dimensional active media. Biofizica 30, 464–466.Google Scholar
  24. [24]
    Panfilov, A.V., Rudenko, A.N. & Krinsky, V.I. (1986). Scroll rings in three dimensional active medium with two component diffusion. Biofizica 31, 80–854.Google Scholar
  25. [25]
    Panfilov, A.V. & Rudenko, A.N. (1987). Two regimes of the scroll ring drift in the three-dimensional active media. Physica 28D, 215–218.MathSciNetGoogle Scholar
  26. [26]
    Panfilov, A.V., Aliev, R.R. & Mushinsky, A.V. (1989). An integral invariant for scroll rings in a reaction-diffusion system. Physica 36D, 181–188.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Panfilov, A.V. & Rudenko, A.N. Unpublished result.Google Scholar
  28. [28]
    Panfilov, A.V. & Aliev, R.R. Integral properties of the filament length. Physica D in preparation.Google Scholar
  29. [29]
    Pertsov, A.M. & Panfilov, A.V. (1981).Spiral waves in active media. Reverberator in the FitzHugh-Nagumo model. In: Autowave processes in Systems with diffusion. Acad. Sci. USSR, Gorky, 77–84.Google Scholar
  30. [30]
    Pertsov, A.M. & Aliev, R.R. 3D vortices in the gel BZ reaction. Physica D, in preparation.Google Scholar
  31. [31]
    Welsh, B.J., Gomatam, J. & Burgess, A.E. (1983). Three-dimensional chemical waves in the Belousov-Zhabotinsky reaction. Nature 304, 611–614.ADSCrossRefGoogle Scholar
  32. [32]
    Winfree, A.T. (1973). Scroll-shaped Waves of Chemical Activity in Three Dimensions. Science 181, 937–939.ADSCrossRefGoogle Scholar
  33. [33]
    Winfree, A.T. (1974). Rotating chemical reactions. Sci. Amer. 230(6), 82–95.CrossRefGoogle Scholar
  34. [34]
    Winfree, A.T. (1975). Two kinds of waves in an oscillating chemical solution. Faraday Symposia of the Chemical Society No. 9, 38–46.CrossRefGoogle Scholar
  35. [35]
    Winfree, A.T. (1978). Stably rotating patterns of reaction and diffusion. In Periodicities in Chemistry and Biology, Progress in Theoretical Chemistry, Eyring, H., and Henderson, D., (eds.). Academic Press: New York, 4, 1–51.Google Scholar
  36. [36]
    Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 1. Geometrically Simple Waves. Physica 8D, 35–49.MathSciNetGoogle Scholar
  37. [37]
    Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 2. Twisted Waves. Physica 9D, 65–80.MathSciNetGoogle Scholar
  38. [38]
    Winfree, A.T. & Strogatz, S.H. (1983). Singular Filaments Organize Chemical Waves in Three Dimensions: 3. Knotted Waves. Physica 9D, 333–345.MathSciNetGoogle Scholar
  39. [39]
    Winfree, A.T. & Strogatz, S.H. (1984). Singular Filaments Organize Chemical Waves in Three Dimensions: 4. Wave Taxonomy. Physica 13D, 221–233.MathSciNetGoogle Scholar
  40. [40]
    Winfree, A.T. & Strogatz, S.H. (1984). Organizing centers for three-dimensional chemical waves. Nature 311, 611–615.ADSCrossRefGoogle Scholar
  41. [41]
    Winfree, A.T. & Guilford, W. (1988). The dynamics of organizing centers: Numerical experiments in differential geometry. In Biomathematics and Related Computational Problems, Ricciardi (ed.). Kluwer Academic Biomathematics and Related Computational Problems, 697–716.CrossRefGoogle Scholar
  42. [42]
    Winfree, A.T. & Jahnke, W.J. (1989). Three-dimensional scroll ring dynamics in the Belousov-Zhabotinsky reagent and the 2-variable Oregonator model. J. Phys.Chem. 93, 2823–2932.CrossRefGoogle Scholar
  43. [43]
    Yakushevich, L.V. (1984). Vortex filament Elasticity in Active Medium. Studia Biophysica 100, 195–200.Google Scholar
  44. [44]
    Zykov, V.S. (1984). Modelling of the Wave Processes in Excitable Medium. Nauka: Moscow.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. V. Panfilov
    • 1
  1. 1.Institute of Biological PhysicsPushchino, Moscow RegionUSSR

Personalised recommendations