Dimensional Analysis of the Ventricular Fibrillation ECG

  • Flavia Ravelli
  • Renzo Antolini
Part of the NATO ASI Series book series (NSSB, volume 244)


From electrocardiographic data the correlation dimension of human ventricular fibrillation has been calculated. Since the algorithm does not converge towards a definitive dimension this arrhythmia cannot be associated with a low-dimensional chaotic dynamical system.


Ventricular Fibrillation Phase Portrait Dimensional Analysis Correlation Dimension Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adam, D.R., Smith, J.M., Akselrod, S., Nyberg, S., Powell, A.O. & Cohen, R.J. (1984). Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocardiol. 17, 209–218.CrossRefGoogle Scholar
  2. [2]
    Allessie, M.A., Lammers, W.J.E.P., Bonke, F.I.M. & Hollen, J. (1985). Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In Cardiac Electrophysiology and Arrhythmias, pp. 265–275. Zipes, D.P. & Jalife, J. (eds.). Grune and Stratton: Orlando.Google Scholar
  3. [3]
    Babloyantz, A. & Destexhe, A. (1988). Is the normal heart a periodic oscillator? Bioi. Cybern. 58, 203–211.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Chialvo, D.R. & Jalife, J. (1987). Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330, 749–752.ADSCrossRefGoogle Scholar
  5. [5]
    Fraser, A.M. & Swinney, H.L. (1986). Using mutual information to find independent coordinates for strange attractors. Phys. Rev. A33, 1134–1140.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Froehling, H., Crutchfield, J.P., Farmer, J.D., Packard, N.H. & Shaw, R. (1981). On determining the dimension of chaotic flows. Physica 3D, 605–617.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Glass, L., Guevara, M.R., Shrier, A.R. & Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica 7D, 89–101.Google Scholar
  8. [8]
    Glass, L., Goldberger, A.L., Courtemanche, M. & Shrier, A. (1987). Nonlinear dynamics, chaos and complex cardiac arrhythmias. In Dynamical Chaos, pp. 9–26, Berry, M.V., Percival, I.C. & Weiss, N.O. (eds.). Princeton Univ. Press: Princeton.Google Scholar
  9. [9]
    Goldberger, A.L., Bhargava, V., West, B.J. & Mandell, A.J. (1986). Some observations on the question: is ventricular fibrillation “chaos”? Physica. 19D, 282–289.MathSciNetGoogle Scholar
  10. [10]
    Grassberger, P. & Procaccia, I. (1983). Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349.ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    Grassberger, P. & Procaccia, I. (1983). Measuring the strangeness of Strange attractors. Physica 9D, 189–208.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Krinskii, V.I. (1968). Fibrillation in excitable media. Systems Theory Research (Prob. Kyb.) 20, 46–65.Google Scholar
  13. [13]
    Layne, S.P., Mayer-Kress, G. & Holzfuss, J. (1986). Problems associated with dimensional analysis of electroencephalogram data. In Dimensions and Entropies in Chaotic Systems. Quantification of Complex Behavior, pp. 246–256, Mayer-Kress, G. (ed.). Springer-Verlag: Berlin.CrossRefGoogle Scholar
  14. [14]
    Mayer-Kress, G. (1986). Dimensions and Entropies in Chaotic Systems. Quant ification of Complex Behavior. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  15. [15]
    Moe, G.K., Rheinboldt, W.C. & Abildskov, J.A. (1964). A computer model of atrial fibrillation. Am. Heart J. 67, 200–220.CrossRefGoogle Scholar
  16. [16]
    Savino, G.V., Romanelli, L., Gonzales, D.L., Piro, O & Valentinuzzi, M.E. (1989). Evidence for chaotic behavior in driven ventricles. Biophys. J. 56, 273–280.CrossRefGoogle Scholar
  17. [17]
    Smith, J.M. & Cohen, R.J. (1984). Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc. Natl. Acad. Sci. USA 81, 233–237.ADSCrossRefGoogle Scholar
  18. [18]
    Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture Notes in Mathematics, pp. 366–381, Rand, D.A. & Young, L.S. (eds.), Vol. 898. Springer-Verlag: Berlin.Google Scholar
  19. [19]
    Theiler, J. (1986). Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. 34A, 2427–2432.ADSCrossRefGoogle Scholar
  20. [20]
    Zbilut, J.P., Mayer-Kress, G., Sobotka, P.A., O’Toole, M. & Thomas Jr., J.X. (1989). Bifurcations and intrinsic chaotic and l/f dynamics in an isolated perfused rat heart. Biol. Cybern. 61, 371–378.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Flavia Ravelli
    • 1
  • Renzo Antolini
    • 2
  1. 1.Istituto per la Ricerca Scientifica e TecnologicaTrentoItaly
  2. 2.Dipartimento di FisicaUniversità degli Studi di TrentoItaly

Personalised recommendations