Nonlinear Dynamics and Ionic Mechanisms of Excitation Patterns in Models of the Cardiac Myocyte

  • Alain Vinet
  • Dante R. Chialvo
  • Donald C. Michaels
  • Jose Jalife
Part of the NATO ASI Series book series (NSSB, volume 244)


Ventricular arrhythmias are spatial phenomena which result from one or more activation fronts travelling at a given time across the cardiac muscle. Two basic mechanisms have been postulated for the genesis and/or perpetuation of such depolarization wavefronts: (i) the activity of local pacemakers, referred to as ectopic foci [23, 24]; and (ii) the formation of reentrant circuits, whereby the wavefront circles around an electrically excitable ventricular pathway [24]. Both mechanisms require that individual excitable cells involved in the arrhythmias be able to sustain high frequency pacing, and both mechanisms demand a description of the phase-locking behaviour of such cells when subjected to external driving.


Lyapunov Exponent Cardiac Cell Parameter Plane Repetitive Stimulation Bifurcation Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aihara, K. & Matsumoto, G. (1987). Forced oscillations and route to chaos in the Hodgkin-Huxley axons and squid giant axons. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 121–131. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.CrossRefGoogle Scholar
  2. [2]
    Alexander, J.C., Doedel, E.J. & Othmer, H.G. On the resonance structure in forced excitable systems. Siam J. App. Math., in press.Google Scholar
  3. [3]
    Antzelevitch, C., Jalife, J. & Moe, G.K. (1980). Characteristics of reflection as a mechanism of re-entrant arrhythmias and its relation to parasystole. Circulation 61, 182–191.CrossRefGoogle Scholar
  4. [4]
    Arrigo, P., Marconi, L., Morgavi, G., Ridella, S., Rolando, C. & Scalia, F. (1987). High sensitivity chaotic behaviour in sinusoidally driven Hodgkin-Huxley equations. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 113–119. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.CrossRefGoogle Scholar
  5. [5]
    Beeler, G.W. & Reuter, H. (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268, 177–210.Google Scholar
  6. [6]
    Chay, T.R. & Lee, Y.S. (1985). Phase resetting and bifurcation in the ventricular myocardium. Biophys. J. 47, 641–651.ADSCrossRefGoogle Scholar
  7. [7]
    Chialvo, R.D. & Jalife, J. (1987). Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330, 749–752.ADSCrossRefGoogle Scholar
  8. [8]
    Chialvo, R.D., Michaels, D.C. & Jalife, J. Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res., in press.Google Scholar
  9. [9]
    Devaney, R.L. (1989). An introduction to chaotic dynamical systems, pp. 1–147. Addison-Wesley: New York.zbMATHGoogle Scholar
  10. [10]
    DeYoung, G. & Othmer, H.G. Resonance in oscillatory and excitable systems. N.Y. Acad. Sci., in press.Google Scholar
  11. [11]
    Drouhard, J.P. & Roberge, F.A. (1987). Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput. Biomed. Res. 20, 333–350.CrossRefGoogle Scholar
  12. [12]
    Fitzhugh, R. (1960). Threshold and plateaus in the Hodgkin- Huxley nerves equations. J. Gen. Physiol. 43, 867–897.CrossRefGoogle Scholar
  13. [13]
    Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–461.ADSCrossRefGoogle Scholar
  14. [14]
    Glass, L. & Belair, J. (1986). Continuation of Arnold tongues in mathematical models of periodically forced biological oscillators. In Nonlinear oscillations in biology and chemistry, Othmer, H.G. (ed.), pp. 232–243. Vol. 66 of Lecture Notes in Biomath. Springer-Verlag: New York.CrossRefGoogle Scholar
  15. [15]
    Glass, L. & Mackey, M.C. (1988). From clocks to chaos, p. 99–143. Princeton Univ. Press: Princeton.zbMATHGoogle Scholar
  16. [16]
    Hayashi, H. & Ishizuka, S. (1987). Chaos in molluscan neuron. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 157–166. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.CrossRefGoogle Scholar
  17. [17]
    Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 177, 500–544.Google Scholar
  18. [18]
    Holden, A.V. (1976). The response of excitable membrane models to a cyclic input. Biol. Cybernetics 21, 1–7.CrossRefGoogle Scholar
  19. [19]
    Jalife, J. & Moe, G.K. (1981). Excitation, conduction and reflection of impulses in isolated bovine and canine cardiac Purkinje fibers. Circ. Res. 49, 233–247.CrossRefGoogle Scholar
  20. [20]
    Jensen, J.H., Christiansen, P.L., Scott, A.C. & Skovgaard, O. (1984). Chaos in the Beeler-Reuter system for the action potential of ventricular myocardial fibres. Physica D 13, 269–277.zbMATHMathSciNetGoogle Scholar
  21. [21]
    Lewis, T.J. & Guevara, M.R. Chaotic dynamics in an ionic model of the propagated action potential. (Submitted)Google Scholar
  22. [22]
    Matsumoto, G., Takahashi, N. & Hanyu, Y. (1987). Chaos, phase locking and bifurcation in normal squid axon. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 143–165. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.CrossRefGoogle Scholar
  23. [23]
    Moe, G.K. & Mendez, C. (1973) Physiologic basis of premature beats and sustained tachycardia. N. Eng. J. Med. 288, 250–254.CrossRefGoogle Scholar
  24. [24]
    Moe, G.K. (1975). Evidence for reentry as a mechanism of cardiac arrhythmias. Rev. Physiol. Biochem. Pharmacol. 72, 55–81.CrossRefGoogle Scholar
  25. [25]
    Nagumo, J., Arimoto, S. & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.CrossRefGoogle Scholar
  26. [26]
    Nagumo, J.I. & Sato, S. (1972). On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164.CrossRefzbMATHGoogle Scholar
  27. [27]
    Othmer, H.G. The dynamics of forced excitable systems. In Nonlinear wave processes, Holden, A.V., Markus, M. & Othmer, H.G. (eds.). Plenum Press, in press.Google Scholar
  28. [28]
    Sato, S., Masaaki, H. & Nagumo, J.I. (1974). Response characteristics of a neuron model to a periodic input. Kybernetik 16, 1–8.CrossRefzbMATHGoogle Scholar
  29. [29]
    Schuster, H.G. (1984). Determinstic chaos: an introduction, p. 101. Springer-Verlag: New York.Google Scholar
  30. [30]
    Stockbridge, N. (1988). Etiology for the supernormal period. Biophys. J. 54, 77–78.CrossRefGoogle Scholar
  31. [31]
    Vinet, A., Chialvo, D.R. & Jalife, J. Irregular dynamics of excitation in biological and mathematical models of cardiac cells. In Electrocardiography: Past and future, Garfein, O.B. & Coumel, P. (eds.). N.Y. Acad. Sci., in press.Google Scholar
  32. [32]
    Vinet, A., Chialvo, D.R., Michaels, D.C. & Jalife, J. Nonlinear dynamics of rate-dependent activation in models of single cardiac cells. (Submitted)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Alain Vinet
    • 1
  • Dante R. Chialvo
    • 1
  • Donald C. Michaels
    • 1
  • Jose Jalife
    • 1
  1. 1.State University of New York Health Science CenterSyracuseUSA

Personalised recommendations