Skip to main content

Nonlinear Dynamics and Ionic Mechanisms of Excitation Patterns in Models of the Cardiac Myocyte

  • Chapter
  • 148 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 244))

Abstract

Ventricular arrhythmias are spatial phenomena which result from one or more activation fronts travelling at a given time across the cardiac muscle. Two basic mechanisms have been postulated for the genesis and/or perpetuation of such depolarization wavefronts: (i) the activity of local pacemakers, referred to as ectopic foci [23, 24]; and (ii) the formation of reentrant circuits, whereby the wavefront circles around an electrically excitable ventricular pathway [24]. Both mechanisms require that individual excitable cells involved in the arrhythmias be able to sustain high frequency pacing, and both mechanisms demand a description of the phase-locking behaviour of such cells when subjected to external driving.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aihara, K. & Matsumoto, G. (1987). Forced oscillations and route to chaos in the Hodgkin-Huxley axons and squid giant axons. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 121–131. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.

    Chapter  Google Scholar 

  2. Alexander, J.C., Doedel, E.J. & Othmer, H.G. On the resonance structure in forced excitable systems. Siam J. App. Math., in press.

    Google Scholar 

  3. Antzelevitch, C., Jalife, J. & Moe, G.K. (1980). Characteristics of reflection as a mechanism of re-entrant arrhythmias and its relation to parasystole. Circulation 61, 182–191.

    Article  Google Scholar 

  4. Arrigo, P., Marconi, L., Morgavi, G., Ridella, S., Rolando, C. & Scalia, F. (1987). High sensitivity chaotic behaviour in sinusoidally driven Hodgkin-Huxley equations. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 113–119. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.

    Chapter  Google Scholar 

  5. Beeler, G.W. & Reuter, H. (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268, 177–210.

    Google Scholar 

  6. Chay, T.R. & Lee, Y.S. (1985). Phase resetting and bifurcation in the ventricular myocardium. Biophys. J. 47, 641–651.

    Article  ADS  Google Scholar 

  7. Chialvo, R.D. & Jalife, J. (1987). Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330, 749–752.

    Article  ADS  Google Scholar 

  8. Chialvo, R.D., Michaels, D.C. & Jalife, J. Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ. Res., in press.

    Google Scholar 

  9. Devaney, R.L. (1989). An introduction to chaotic dynamical systems, pp. 1–147. Addison-Wesley: New York.

    MATH  Google Scholar 

  10. DeYoung, G. & Othmer, H.G. Resonance in oscillatory and excitable systems. N.Y. Acad. Sci., in press.

    Google Scholar 

  11. Drouhard, J.P. & Roberge, F.A. (1987). Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput. Biomed. Res. 20, 333–350.

    Article  Google Scholar 

  12. Fitzhugh, R. (1960). Threshold and plateaus in the Hodgkin- Huxley nerves equations. J. Gen. Physiol. 43, 867–897.

    Article  Google Scholar 

  13. Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–461.

    Article  ADS  Google Scholar 

  14. Glass, L. & Belair, J. (1986). Continuation of Arnold tongues in mathematical models of periodically forced biological oscillators. In Nonlinear oscillations in biology and chemistry, Othmer, H.G. (ed.), pp. 232–243. Vol. 66 of Lecture Notes in Biomath. Springer-Verlag: New York.

    Chapter  Google Scholar 

  15. Glass, L. & Mackey, M.C. (1988). From clocks to chaos, p. 99–143. Princeton Univ. Press: Princeton.

    MATH  Google Scholar 

  16. Hayashi, H. & Ishizuka, S. (1987). Chaos in molluscan neuron. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 157–166. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.

    Chapter  Google Scholar 

  17. Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 177, 500–544.

    Google Scholar 

  18. Holden, A.V. (1976). The response of excitable membrane models to a cyclic input. Biol. Cybernetics 21, 1–7.

    Article  Google Scholar 

  19. Jalife, J. & Moe, G.K. (1981). Excitation, conduction and reflection of impulses in isolated bovine and canine cardiac Purkinje fibers. Circ. Res. 49, 233–247.

    Article  Google Scholar 

  20. Jensen, J.H., Christiansen, P.L., Scott, A.C. & Skovgaard, O. (1984). Chaos in the Beeler-Reuter system for the action potential of ventricular myocardial fibres. Physica D 13, 269–277.

    MATH  MathSciNet  Google Scholar 

  21. Lewis, T.J. & Guevara, M.R. Chaotic dynamics in an ionic model of the propagated action potential. (Submitted)

    Google Scholar 

  22. Matsumoto, G., Takahashi, N. & Hanyu, Y. (1987). Chaos, phase locking and bifurcation in normal squid axon. In Chaos in Biological Systems, Holden, A.V. & Olsen, L.F. (eds.), pp. 143–165. NATO ASI series, Series A: Life Sciences, Vol. 138. Plenum Press: New York.

    Chapter  Google Scholar 

  23. Moe, G.K. & Mendez, C. (1973) Physiologic basis of premature beats and sustained tachycardia. N. Eng. J. Med. 288, 250–254.

    Article  Google Scholar 

  24. Moe, G.K. (1975). Evidence for reentry as a mechanism of cardiac arrhythmias. Rev. Physiol. Biochem. Pharmacol. 72, 55–81.

    Article  Google Scholar 

  25. Nagumo, J., Arimoto, S. & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.

    Article  Google Scholar 

  26. Nagumo, J.I. & Sato, S. (1972). On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164.

    Article  MATH  Google Scholar 

  27. Othmer, H.G. The dynamics of forced excitable systems. In Nonlinear wave processes, Holden, A.V., Markus, M. & Othmer, H.G. (eds.). Plenum Press, in press.

    Google Scholar 

  28. Sato, S., Masaaki, H. & Nagumo, J.I. (1974). Response characteristics of a neuron model to a periodic input. Kybernetik 16, 1–8.

    Article  MATH  Google Scholar 

  29. Schuster, H.G. (1984). Determinstic chaos: an introduction, p. 101. Springer-Verlag: New York.

    Google Scholar 

  30. Stockbridge, N. (1988). Etiology for the supernormal period. Biophys. J. 54, 77–78.

    Article  Google Scholar 

  31. Vinet, A., Chialvo, D.R. & Jalife, J. Irregular dynamics of excitation in biological and mathematical models of cardiac cells. In Electrocardiography: Past and future, Garfein, O.B. & Coumel, P. (eds.). N.Y. Acad. Sci., in press.

    Google Scholar 

  32. Vinet, A., Chialvo, D.R., Michaels, D.C. & Jalife, J. Nonlinear dynamics of rate-dependent activation in models of single cardiac cells. (Submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinet, A., Chialvo, D.R., Michaels, D.C., Jalife, J. (1991). Nonlinear Dynamics and Ionic Mechanisms of Excitation Patterns in Models of the Cardiac Myocyte. In: Holden, A.V., Markus, M., Othmer, H.G. (eds) Nonlinear Wave Processes in Excitable Media. NATO ASI Series, vol 244. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3683-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3683-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3685-1

  • Online ISBN: 978-1-4899-3683-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics