Advertisement

Electrical Rotors in the Heart

  • P. A. Guse
  • D. W. Frazier
  • N. Shibata
  • P.-S. Chen
  • R. E. Ideker
Chapter
  • 107 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Electrophysiological processes in the heart are responsible for impulse formation and conduction. The normal action of these processes is necessary for the production of an efficient contraction. Interruption of impulse formation or conduction [3, 18] by either biological, pathological, or toxicological mechanisms can cause a disruption of the normal rhythm, which is called an arrhythmia. Two types of abnormal impulse formation can cause cardiac arrhythmias. The first type involves those cells that have the ability to depolarize spontaneously [19] and generate their own action potentials. This includes cells found in the sinoatrial (SA) node, atrioventricular (AV) node, His bundle, and ventricular Purkinje system. By suppressing or enhancing the rate of spontaneous depolarization, an arrhythmia can develop.

Keywords

Potential Gradient Activation Front Ventricular Free Wall Mesh Electrode Reentry Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Allessie, M.A., Bonke, F.I.M. & Schopman, F.J.G. (1977). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41, 9–18.CrossRefGoogle Scholar
  2. [2]
    Chen, P.S., Wolf, P.D., Dixon, E.G., Danieley, N.D., Frazier, D.W., Smith, W.M. & Ideker, R.E. (1988). Mechanism of ventricular vulnerability to single premature stimuli in open chest dogs. Circ. Res. 62, 1191–1209.CrossRefGoogle Scholar
  3. [3]
    Cranefield, P.F., Wit, A.L. & Hoffman, B.F. (1973). Genesis of cardiac arrhythmias. Circulation 47, 190–204.CrossRefGoogle Scholar
  4. [4]
    Dillon, S. & Morad, M. (1981). A new laser scanning system for measuring action potential propagation in the heart. Science 214, 453–456.ADSCrossRefGoogle Scholar
  5. [5]
    El-Sherif, N., Mehar, R., Gough, W.B. & Zeiler, R.H. (1982). Ventricular activation patterns of spontaneous and induced ventricular rhythms in canine one-day-old myocardial infarction: Evidence for focal and reentrant mechanisms. Circ. Res. 51, 152–166.CrossRefGoogle Scholar
  6. [6]
    Frazier, D.W., Krassowska, W., Chen, P.-S., Wolf, P.D., Danieley, N.D., Smith, W.M. & Ideker, R.E. (1988). Transmural activations and stimulus potentials in three- dimensional anisotropic canine myocardium. Circ. Res. 63, 135–146.CrossRefGoogle Scholar
  7. [7]
    Frazier, D.W., Wolf, P.D., Wharton, J.M., Tang, A.S.L., Smith, W.M. & Ideker, R.E. (1989). Stimulus-induced critical point: Mechanism fro the electrical initiation of reentry in normal canine myocardium. J. Clin. Invest. 83, 1039–1052.CrossRefGoogle Scholar
  8. [8]
    Han, J. & Me, G.K. (1964). Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14, 4–60.Google Scholar
  9. [9]
    Kao, C.Y. & Hoffman, B.F. (1958). Graded and decrementai response in heart muscle fibres. Am. J. Physiol. 194, 187–196.Google Scholar
  10. [10]
    Kisch, B. (1950). The mechanics of flutter and fibrillation. A short review of a century of studies. Cardiologia 17, 244–250.CrossRefGoogle Scholar
  11. [11]
    Krinsky, V.I. (ed.) (1984). Self Organization: Autowaves and Structures far from equilibrium. Springer-Verlag: Berlin.zbMATHGoogle Scholar
  12. [12]
    Schmidt, F.O. & Erlanger, J. (1928–29). Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystoles and fibrillary contractions. Am. J. Physiol. 87, 3236–347.Google Scholar
  13. [13]
    Shibata, N. , Chen, P.-S., Dixon, E.G., Wolf, P.D., Danieley, N.D., Smith, W.M. & Ideker, R.E. (1988). Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am. J. Physiol. 255, H8891–H901.Google Scholar
  14. [14]
    Smith, W.M., Funk, A.L., Ideker, R.E., Bartram, F.R., Talbert, P.V. (1982). A microcomputer-based multichannel data acquisition system for the study of complex arrhythmias. In Proc. Computers in Cardiology, pp. 131–134.Google Scholar
  15. [15]
    Spach, M.S., Miller, W.T., III, Geselowitz, D.B., Barr, R.C., Kootsey, J.M. & Johnson, E.A. (1981). The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ. Res. 48, 39–54.CrossRefGoogle Scholar
  16. [16]
    Winfree, A.T. (1983). Sudden cardiac death. Sci. Am. 248, 144–161.ADSCrossRefGoogle Scholar
  17. [17]
    Winfree, A.T. (1987). When time breaks down: the three- dimensional dynamics of electrochemical waves and caridac arrhythmias. Princeton University Press: Princeton, NJ.Google Scholar
  18. [18]
    Wit, A.L., Rosen, M.R. & Hoffman, B.F. (1974). Electrophysiology and pharmacology of cardiac arrhythmias. II. Relationship of normal and abnormal electrical activity of cardiac fibers to the genesis of arrhythmias B. Reentry. Am. Heart J. 88, 664–670.CrossRefGoogle Scholar
  19. [19]
    Wit, A.L. & Rosen, M.R. (1981). Cellular electrophysiology of cardiac arrhythmias. Part I. Arrhythmias caused by abnormal impulse generation. Mod. Concepts Cardiovas. Dis. 50, 1–6.Google Scholar
  20. [20]
    Wit, A.L. & Rosen, M.R. (1981). Cellular electrophysiology of cardiac arrhythmias. Part II. Arrhythmias caused by abnormal impulse conduction. Nod. Concepts Cardiovas. Dis. 50, 7–12.Google Scholar
  21. [21]
    Zaikin, A.N. & Zhabotinsky, A.M. (1970). Concentration wave propagation in two-dimensional liquid-phase self-oscillating systems. Nature 225, 535–537.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. A. Guse
    • 1
    • 2
  • D. W. Frazier
    • 1
    • 2
  • N. Shibata
    • 1
    • 2
  • P.-S. Chen
    • 1
    • 2
  • R. E. Ideker
    • 1
    • 2
  1. 1.Departments of Medicine and PathologyDuke University Medical CenterDuramUSA
  2. 2.The School of EngineeringDuke UniversityDurhamUSA

Personalised recommendations