Advertisement

Two Dimensional Wave Propagation in a Model of Dictyostelium Discoideum

  • P. B. Monk
Chapter
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

We summarize a continuum model for cyclic AMP wave propagation in Dictyostelium discoideum, and show that this model predicts the correct amplitude and period for spiral waves. Particular attention is given to the numerical method used in our simulations.

Keywords

Excitable Medium Spiral Wave Dictyostelium Discoideum Partial Differential Equation Model Cellular Slime Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alcantara, F. & Monk, M. (1974). Signal propagation during aggregation in the slime mold Dictyostelium discoideum. J. Gen. Microbiol. 85, 321–334.CrossRefGoogle Scholar
  2. [2]
    Bramble, J.H., Ewing, R.E. & Li, G. (1989). Alternating direction multistep methods for parabolic problems — iterative stabilization. SIAM J. Numer. Anal. 26, 904–919.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Cohen, M.H. & Robertson, A. (1971). Chemotaxis and the early stages of aggregation in cellular slime molds. J. Theor. Biol. 31, 119–130.CrossRefGoogle Scholar
  4. [4]
    Cohen, M.H. & Robertson, A. (1971). Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118.CrossRefGoogle Scholar
  5. [5]
    Curtis, C.W. & Reiner, I. (1966). Representation theory of finite groups and associative algebras. John Wiley, New York.Google Scholar
  6. [6]
    Devreotes, P.N., Derstine, P.L. & Steck, T.L. (1979). Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum I. A technique to monitor responses to controlled stimuli. J. Cell. Biol. 80, 291–299.CrossRefGoogle Scholar
  7. [7]
    Devreotes, P.N., Potel, M.J. & MacKay, S.A. (1983). Quantitative analysis of cyclic AMP waves mediating aggregation in Dictyostelium discoideum. Dev. Biol. 96, 405–415.CrossRefGoogle Scholar
  8. [8]
    Devreotes, P.N. & Steck, T.L. (1979). Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum II. Requirements for the initiation and termination of the response. J. Cell. Biol. 80, 300–309.CrossRefGoogle Scholar
  9. [9]
    De Young, G., Monk, P.B. & Othmer, H.G. (1988). Pacemakers in aggregation fields of Dictyostelium discoideum. Does a single cell suffice? J. Math. Biol. 26, 486–517.Google Scholar
  10. [10]
    Dinauer, M.C., MacKay, S.A. & Devreotes, P.N. (1980). Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum III. The relationship of cAMP synthesis and secretion during the cAMP signaling response. J. Cell. Biol. 86, 537–544.CrossRefGoogle Scholar
  11. [11]
    Dinauer, M.C., Steck, T.L. & Devreotes, P.N. (1980). Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum IV. Recovery of the cAMP signaling response after adaptation to cAMP. J. Cell. Biol. 86, 545–553.CrossRefGoogle Scholar
  12. [12]
    Dinauer, M.C., Steck, T.L. & Devreotes, P.N. (1980). Cyclic 3′, 5′ AMP relay in Dictyostelium discoideum V. Adaptation of the cAMP signaling response during cAMP stimulation. J. Cell. Biol. 86, 554–561.CrossRefGoogle Scholar
  13. [13]
    Durston, A.J. (1973). Dictyostelium discoideum aggregation fields as excitable media. J. Theor. Biol. 42, 483–504.CrossRefGoogle Scholar
  14. [14]
    Durston, A.J. (1974). Pacemaker mutants of Dictyostelium discoideum. Dev. Biol. 38, 308–319.CrossRefGoogle Scholar
  15. [15]
    Durston, A.J. (1977). The control of morphogenesis in Dictyostelium discoideum. In Horgan, P.A. & O’Day, D.H. (eds.): Eucaryotic Microbes as Model Developmental Systems, pp. 294–321. Marcel Dekker, New York.Google Scholar
  16. [16]
    Gear, C.W. (1971). Numerical initial value problems in ordinary differential equations. Prentice Hall, Englewood Cliffs.zbMATHGoogle Scholar
  17. [17]
    Gihgle, A.R. (1976). Critical density for relaying in Dictyostelium discoideum and its relation to phosphodiesterase secretion into the extracellular medium. J. Cell. Sci. 20, 1–20.Google Scholar
  18. [18]
    Gross, J.D., Peacey, M.J. & Trevan, D.J. (1976). Signal emission and signal propagation during early aggregation in Dictyostelium discoideum. J. Cell. Sci. 22, 645–656.Google Scholar
  19. [19]
    Hundsdorfer, W.H. & Verwer, J.G. (1989). Stability and convergence of the Peaceman-Rachford ADI method for initial- boundary value problems. Math. Comp. 53, 81–101.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Lugosi, E. & Winfree, A.T. (1988). Simulation of wave- propagation in three dimensions using Fortran on the CYBER 205. J. Comp. Chem. 9, 689–701.CrossRefGoogle Scholar
  21. [21]
    Monk, P.B. & Othmer, H.G. (1989). Wave propagation in aggregation fields of Dictyostelium discoideum. In Othmer, H.G. (ed.): Lects. on Math, in Life Sci. American Math. Soc., Providence, R.I.Google Scholar
  22. [22]
    Monk, P.B. & Othmer, H.G. (1989). Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. 323(1215), 185–224.ADSCrossRefGoogle Scholar
  23. [23]
    Monk, P.B. & Othmer, H.G. Wave propagation in aggregation fields of the cellular slime mold Dictyostelium discoideum. In preparation.Google Scholar
  24. [24]
    Nandpurkar, P.J. & Winfree, A.T. (1987). A computational study of twisted linked scroll waves in excitable media. Physica D 29, 69–83.ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    Othmer, H.G., Dunbar, S.R. & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Othmer, H.G. & Monk, P.B. (1988). Concentration waves in aggregation fields of a cellular slime mold. In Ricciardi, L. (ed.): Biomathematics and Related Computational Problems, pp. 381–398. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  27. [27]
    Othmer, H.G., Monk, P.B. & Rapp, P.E. (1985). A model for signal relay and adaptation in Dictyostelium discoideum Part II. Analytical and numerical results. Math. Biosciences 77, 77–139.Google Scholar
  28. [28]
    Panfilov, A.V., Rudenko, A.N. & Krinsky, V.I. (1986). Vortical rings in three dimensional active media with diffusion by two components. Biofizika 31(5), 850–854.Google Scholar
  29. [29]
    Pertsov, A.M., Ermakova, A. & Panfilov, A.V. (1984). Rotating spiral waves in a modified Fitzhugh-Nagumo model. Physica D 14, 117–124.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    Rapp, P.E., Monk, P.B. & Othmer, H.G. (1985). A model for signal relay and adaptation in Dictyostelium discoideum Part I. Biological processes and the model network. Math. Biosciences 77, 35–78.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    Sod, G. (1985). Numerical Methods for Fluid Dynamics: Initial and Initial Boundary-value Problems. Cambridge University Press, New York.CrossRefGoogle Scholar
  32. [32]
    Tomchik, K.J. & Devreotes, P.N. (1981). Adenosine 3′, 5′- monophosphate waves in Dictyostelium discoideum: A demonstration by isotope dilution-fluorography. Science 212, 443–446.ADSCrossRefGoogle Scholar
  33. [33]
    Tyson, J.J. & Keener, J.P. (1988). Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Yermakova, Y.A. & Pertsov, A.M. (1987). Interaction of rotating spiral waves with a boundary. Biophysics 31(5), 932–940.Google Scholar
  35. [35]
    Yermakova, Y.A., Krinskii, V.I., Panfilov, A.V. & Pertsov, A.M. (1986). Interaction of helical and flat periodic autowaves in an active medium. Biophysics 31(2), 348–354.Google Scholar
  36. [36]
    Zykov, V.S. (1986). Cycloid circulation of spiral waves in an excitable medium. Biophysics 31(5), 940–944.Google Scholar
  37. [37]
    Zykov, V.S. (1987). Kinematics of the non-steady circulation of helical waves in an excitable medium. Biophysics 32(2), 365–369.Google Scholar
  38. [38]
    Zykov, V.S. & Petrov, A.A. (1977). Role of the inhomogeneity of an excitable medium in the mechanisms of self-sustained activity. Biofizika 22(2), 300–306.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. B. Monk
    • 1
  1. 1.Department of MathematicsUniversity of DelawareNewarkUSA

Personalised recommendations