Skip to main content

The Dynamics of Forced Excitable Systems

  • Chapter
Nonlinear Wave Processes in Excitable Media

Part of the book series: NATO ASI Series ((NSSB,volume 244))

Abstract

An excitable system is one whose dynamics have the following properties: (i) there is a rest point or a steady state that is globally attracting relative to some large set in phase space, and (ii) there is a region in state space that can be idealized as a surface of codimension one that locally partitions the phase space into two sets D and A. the rest point lies in D (the decaying set) and all orbits through initial points in D return to the rest point without any substantial growth in any of the state variables. Thus an impulsive perturbation of the rest point that leaves the state in V decays without significant growth, and the responses are called subthreshold. By contrast, perturbations that carry the dynamics into A (the amplifying set) can lead to a large change in one or more of the state variables, even though the system eventually returns to the rest state. The surface that locally separates the amplifying and decaying sets is called the threshold surface, and perturbations that carry the state into A are called superthreshold. Excitable dynamics occur in many biological processes, including activation of contraction in cardiac tissue, nerve conduction, and cell signalling in development. In the Fitzhugh-Nagumo equations [10], the Hodgkin- Huxley equations [15], models of the cellular slime mold Dictyostelium discoideum [22, 20, 21], the Field-Noyes model of the Zhabotinskii-Belousov reaction [9] and other models, the parameters can be chosen so that the dynamics are excitable. Frequently these systems also have periodic solutions for parameters close to those that produce excitable behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.C., Doedel, E.J. & Othmer, H.G. On the resonance structure in a forced excitable system. To appear in SIAM J. Appl. Math., 1990.

    Google Scholar 

  2. Alexander, J.C., Doedel, E.J. & Othmer, H.G. (1989). Resonance and phase-locking in excitable systems. Lects. on Math. Life Sci. 21, 1–37.

    MathSciNet  Google Scholar 

  3. Aronson, D., Doedel, E.J. & Othmer, H.G. (1986). Bistable behavior in coupled oscillators. In Nonlinear Oscillations in Biology and Chemistry, pp. 221–231, Othmer, H.G. (ed.). Lecture Notes in Biomathematics 66, Springer-Verlag.

    Chapter  Google Scholar 

  4. Aronson, D., Doedel, E.J. & Othmer, H.G. (1987). An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators. Physica 25D, 20–104.

    MATH  MathSciNet  Google Scholar 

  5. Builder, G. & Roberts, N.F. (1939). The synchronization of a simple relaxation oscillator. AW A Tech. Rev. 4, 164–180.

    Google Scholar 

  6. Chialvo, D.R. & Jalife, J. (1987). Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330, 749–752.

    Article  ADS  Google Scholar 

  7. DeYoung, G. & Othmer, H.G. Resonance in oscillatory and excitable systems. To appear in Ann. N.Y. Acad. Sci., 1990.

    Google Scholar 

  8. Doedel, E.J. (1981). AUTO: A program for the automatic bifurcation and analysis of autonomous systems. In Proc. 10th Manitoba Conf. Num. Anal. and Comp., pp. 265–284.

    Google Scholar 

  9. Field, R.J. & Noyes, R.M. (1974). Oscillations in chemical systems, IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Physics 60, 1877–1884.

    Article  ADS  Google Scholar 

  10. Fitzhugh, R. (1969). Mathematical models of excitation and propagation in nerve. In Biological Engineering, pp. 1–85, Schwan, H.P. (ed.). McGraw-Hill.

    Google Scholar 

  11. Glass, L., Guevara, M.R., Belair, J. & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Phys. Rev. A29, 1348–1357.

    Article  ADS  MathSciNet  Google Scholar 

  12. Glass, L. & Belair, J. (1986). Continuation of Arnold tongues in mathematical models of periodically forced biological oscillators. In Nonlinear Oscillations in Biology and Chemistry, pp. 232–243, Othmer, H.G. (ed.). Lecture Notes in Biomathematics 66.

    Chapter  Google Scholar 

  13. Guttman, R. , Feldman, L. & Jakobsson, E. (1980). Frequency entrainment of squid axon membrane. J. Membrane Biol. 56, 9–18.

    Article  Google Scholar 

  14. Hartman, P. (1964). Ordinary Differential Equations. John Wiley and Sons.

    MATH  Google Scholar 

  15. Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    Google Scholar 

  16. Holden, A.V. (1976). The response of excitable membrane models to a cyclic input. Biol. Cybernetics 21, 1–7.

    Article  Google Scholar 

  17. Hudson, J.L., Lamba, P. & Mankin, J.C. (1986). Experiments on low-amplitude forcing of a chemical oscillator. J. Phys. Chem. 90, 3430–3434.

    Article  Google Scholar 

  18. Matsumoto, G., Aihara, K., Hanyu, Y., Takahashi, N., Yoshizawa, S. & Nagumo, J.-I. (1987). Chaos and phase locking in normal squid axons. Phys. Rev. Lett. A 123(4), 162–166.

    Article  ADS  Google Scholar 

  19. Markevich, N.I. & Sel’kov, E.E. (1989). Parametric resonance and amplification in excitable membranes. The Hodgkin-Huxley model. J. Theor. Biol. 140, 27–38.

    Article  MathSciNet  Google Scholar 

  20. Monk, P.B. & Othmer, H.G. (1989). Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. 323(1215), 185–224.

    Article  ADS  Google Scholar 

  21. Monk, P.B. & Othmer, H.G. Wave propagation in aggregation fields of the cellular slime mode Dictyostelium discoideum. Submitted.

    Google Scholar 

  22. Othmer, H.G. & Monk, P.B. (1988). Concentration waves in aggregation fields of a cellular slime mold. In Biomathematics and Related Computational Problems, pp. 381–398, Ricciardi, L. (ed.). Kluwer Academic Publishers: Dordrecht.

    Chapter  Google Scholar 

  23. Nagumo, J.-I. & Sato, S. (1972). On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164.

    Article  MATH  Google Scholar 

  24. Sato, S., Hatta, M. & Nagumo, J.-I. (1974). Response characteristics of a neuron model to a periodic input. Kybernetik 16, 1–8.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Othmer, H.G. (1991). The Dynamics of Forced Excitable Systems. In: Holden, A.V., Markus, M., Othmer, H.G. (eds) Nonlinear Wave Processes in Excitable Media. NATO ASI Series, vol 244. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3683-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3683-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3685-1

  • Online ISBN: 978-1-4899-3683-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics