Advertisement

Randomized Automata for Isotropic Modelling of two- and Three-Dimensional Waves And Spatiotemporal Chaos in Excitable Media

  • M. Markus
  • M. Krafczyk
  • B. Hess
Chapter
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

In the present volume, a large variety of excitable media in chemistry, physics, biology and even astronomy is presented. This volume also contains a number of tools for the modelling of wave propagation in such media. Among these tools, cellular automata have proven for a long time to show a number of advantages: they are intuitively appealing, being easily described and understood, they can easily be programmed and they run relatively fast on a computer.

Keywords

Cellular Automaton Excitable Medium Spiral Wave Isotropic Modelling Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wiener, N. & Rosenbluth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Hex. 16, 205–265.Google Scholar
  2. [2]
    Madore, B.F. & Freedman, W.L. (1983). Computer simulation of the Belousov-Zhabotinskii reaction. Science 222, 615–616 and cover.ADSCrossRefGoogle Scholar
  3. [3]
    Winfree, A.T., Winfree, E.M. & Seifert, H. (1985). Organizing centers in a cellular excitable medium. Physica 17D, 109–115.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Panfilov, A.V. & Winfree, A.T. (1985). Dynamical simulations of twisted scroll rings in three-dimensional excitable media. Physica 17D, 323–330.MathSciNetGoogle Scholar
  5. [5]
    Plath, P.J. A new pattern of spreading excitations in cellular automata. In this volume.Google Scholar
  6. [6]
    Hanusse, P., Perez-Muñuzuri, V. & Vidal, C. Phase dynamics and spatial patterns in oscillating and excitable media. In this volume.Google Scholar
  7. [7]
    Kurrer, C. & Schulten, K. Propagation of chemical waves in discrete excitable media: anisotropic and isotropic wave fronts. In this volume.Google Scholar
  8. [8]
    Markus, M. & Hess, B. (1988). An automaton with randomly distributed cells for the simulation of waves in excitable media. Abstract-book of the 16th Aharon Katzir-Katchalsky Conference on Dynamics in Molecular and Cellular Biology (Univ. Libre de Bruxelles), pp. 37–38.Google Scholar
  9. [9]
    Markus, M. & Hess, B. (1990). Isotropic automata for simulations of excitable media: periodicity, chaos and reorganization. In Dissipative Structures in Transport Processes and Combustion, Meinköhn, D. (ed.). Springer-Verlag: Berlin (in press).Google Scholar
  10. [10]
    Penrose, R. (1979). Pentaplexity. Math. Intelligencer 2, 32–37.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Nelson, D.R. & Halperin, B.I. (1985). Pentagonal and icosahedral order in rapidly cooled metals. Science 229, 233–238.ADSCrossRefGoogle Scholar
  12. [12]
    Hardy, J., Pomeau, Y. & dePazzis, O. (1973). The evolution of a two-dimensional model system. I: Invariant states and time correlation functions. J. Math. Phys. 14, 1746–1759.ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    Frisch, U., Hasslacher, B. & Pomeau, Y. (1986). Lattice gas automaton for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505–1508.ADSCrossRefGoogle Scholar
  14. [14]
    Nasilowski, R. An arbitrary-dimensional cellular automaton fluid model with simple rules. In Dissipative Structures in Transport Processes and Combustion, Meinköhn, D. (ed.). Springer-Verlag: Berlin (in press).Google Scholar
  15. [15]
    Zykov, V.S. & Mikhailov, A.S. (1986). Rotating spiral waves in a simple model of an excitable medium. Sov. Phys. Doklady 31, 51–52.ADSGoogle Scholar
  16. [16]
    Dorjsurangiyn, B. (1987). Autowave processes in active media formed by cellular automata. Diploma Thesis. M.V. Lomonosov Moscow State Univ. Dept. of Physics.Google Scholar
  17. [17]
    Gerhardt, M. & Schuster, H. (1989). A cellular automaton describing the formation of spatially ordered structures in chemical systems. Physica D36, 209–221.zbMATHMathSciNetGoogle Scholar
  18. [18]
    Gerhardt, M., Schuster, H. & Tyson, J.J. A cellular automaton model of excitable media including curvature and dispersion. Science, in press.Google Scholar
  19. [19]
    Keener, J.P. & Tyson, J.J. (1986). Spiral waves in the Belousov-Zhabotinskii reaction. Physica 21D, 307–324.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Müller, S.C., Plesser, Th. & Hess, B. (1987). Two-dimensional spectrophotometry of spiral wave formation in the Belousov-Zhabotinskii reaction. Physica 24D, 71–86.Google Scholar
  21. [21]
    Agladze, K.I. & Krinsky, V.I. (1982). Multi-armed vortices in an active chemical medium. Nature 296, 424–426.ADSCrossRefGoogle Scholar
  22. [22]
    Medvinsky, A.B., Panfilov, A.V. & Pertsov, A.M. (1984). Properties of rotating waves in three dimensions. Scroll waves in myocard. In Self-Organization. Autowaves and Structures far from Equilibrium, pp. 195–199, Krinsky, V.I. (ed.). Springer-Verlag: Berlin.CrossRefGoogle Scholar
  23. [23]
    Goldberger, A.L., Bhargava, V., West, B.J. & Mandell, A.J. (1986). Some observations on the question: Is ventricular fibrillation “chaos”? Physica 19D, 282–289.MathSciNetGoogle Scholar
  24. [24]
    Shibata, M. & Bures, J. (1974). Optimum topographical conditions for reverberating cortical spreading depression in rats. J. Neurobiol. 5, 107–118.CrossRefGoogle Scholar
  25. [25]
    Krinsky, V.I. & Agladze, K.I. (1983). Interaction of rotating waves in a chemical active medium. Physica 8D, 50–56.Google Scholar
  26. [26]
    Foerster, P., Müller, S.C. & Hess, B. (1988). Curvature and propagation velocity of chemical waves. Science 241, 685–687.ADSCrossRefGoogle Scholar
  27. [27]
    Foerster, P., Müller, S.C. & Hess, B. (1989). Critical size and curvature of wave formation in an excitable chemical medium. Proc. Natl. Acad. Sci. USA 86, 6831–6834.ADSCrossRefGoogle Scholar
  28. [28]
    Tyson, J.J. & Keener, J.P. (1988). Singular perturbation theory of travelling waves in excitable media (a review). Physica D32, 327–361.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Zykov, V.S. & Morozova, O.L. (1980). Speed of spread of excitation in a two-dimensional excitable medium. Biophysics 24, 739–744.Google Scholar
  30. [30]
    Zykov, V.S. (1980). Analytical evaluation of the dependence of the speed of an excitable wave in a two-dimensional excitable medium on the curvature of its front. Biophysics 25, 906–911.Google Scholar
  31. [31]
    Foerster, P. & Müller, S.C. Geometric parameters of aggregating waves in Dictyostelium discoideum. In this volume.Google Scholar
  32. [31]
    Foerster, P., Müller, S.C. & Hess, B. Curvature and spiral geometry in aggregating patterns of Dictyostelium discoideum. Development, in press.Google Scholar
  33. [33]
    Siegert, F. & Weijer, C. (1989). Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effect of caffeine and ammonia. J. Cell. Sci. 93, 325–335.Google Scholar
  34. [34]
    Markus, M., Müller, S.C., Plesser, Th. & Hess, B. (1987). Characterization of order and disorder in two-dimensional patterns. In Chaos in Biological Systems, p. 295–303, Degn, H., Holden, A.V. & Olsen, L.F. (eds.). Plenum Press: New York.CrossRefGoogle Scholar
  35. [35]
    Markus, M., Müller, S.C., Plesser, Th. & Hess, B. (1987). On the recognition of order and disorder. Biol. Cybern. 57, 187–195.CrossRefGoogle Scholar
  36. [36]
    Kurrer, C. (1989). Nichtlineare Oszillatoren und Selbstorganisation in biologischen Systemen. Diplomarbeit. Physik-Department, Technische Univ., München.Google Scholar
  37. [37]
    Colli Franzone, P., Guerri, L., Rovida, S. & Tentoni, S. A model of excitation wavefronts spreading in the anisotropic cardiac tissue. In this volume.Google Scholar
  38. [38]
    Wolf, A., Swift, J.B., Swinney, H.G. & Vastano, J.A. (1985). Determining Lyapunov exponents from a time series. Physica 16D, 285–317.zbMATHMathSciNetGoogle Scholar
  39. [39]
    Nagy-Ungvarai, Zs. Chemical regulation of excitability in the Belousov- Zhabotinskii reaction. In this volume.Google Scholar
  40. [40]
    Pertsov, A.M., Panfilov, A.V. & Medvedeva, F.U. (1983). Instability of autowaves in excitable media associated with the phenomenon of critical curvature. Biophysics 28, 103–107.Google Scholar
  41. [41]
    Winfree, A.T. (1973). Scroll-shaped waves of chemical activity in three dimensions. Science 181, 937–939.ADSCrossRefGoogle Scholar
  42. [42]
    Panfilov, A.V. Three dimensional vortices in active media. In this volume.Google Scholar
  43. [43]
    Krinsky, V.I., Pertsov, A.M., Fast, V. & Biktashev, V.A. Study of the autowave mechanisms of cardia arrhythmias. In this volume.Google Scholar
  44. [44]
    Welsh, B.J., Gomatam, J. & Burgess, A.E. (1983). Three-dimensional chemical waves in the Belousov-Zhabotinskii reaction. Nature 304, 611–614 and cover.ADSCrossRefGoogle Scholar
  45. [45]
    Winfree, A.T. & Strogatz, S.H. (1984). Organizing centres for three-dimensional chemical wavefronts. Nature 311, 611–615.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Markus
    • 1
  • M. Krafczyk
    • 1
  • B. Hess
    • 1
  1. 1.Max-Planck Institut für ErnahrungsphysiologieDortmund 1Germany

Personalised recommendations