Advertisement

Model for Spiral Wave Formation in Excitable Media

  • P. Pelcé
Chapter
  • 106 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Geometrical models are simple caricatures that are used to capture the essential features of a complex dynamics. For instance in dendritic growth the motion of a liquid-solid interface is determined by a free-boundary problem for a diffusion field (temperature, concentration of an impurity). This kind of problem is difficult to solve since it involves nonlinear integral equations.

Keywords

Geometrical Model Metastable State Tangential Velocity Normal Velocity Closed Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brower, R.C., Kessler, D.A., Koplik, J. & Levine, H. (1983). Phys. Rev. Lett. 51, 1111.ADSCrossRefGoogle Scholar
  2. [2]
    Mull ins, W.W. & Sekerka, R.F. (1964). J. Appl. Phys. 3, 444.ADSCrossRefGoogle Scholar
  3. [3]
    Langer, J.S. (1986). Phys. Rev. A33, 435.ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    Frankel, M.L. & Sivashinsky, G.I. (1987). J. Phys. 48, 25.CrossRefGoogle Scholar
  5. [5]
    Markstein, G.H. (1951). J. Aero. Sci. 18, 199.CrossRefGoogle Scholar
  6. [6]
    Meron, E. & Pelcé, P. (1988). Phys. Rev. Lett. 60, 1880.ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    Zykov, V.S. (1988). Modelling of wave processes in excitable media. Manchester University Press: Manchester.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. Pelcé
    • 1
  1. 1.Laboratoire de Recherche en CombustionUniversite de Provence-St. JeromeMarseilleFrance

Personalised recommendations