Advertisement

The Effect of Wavefront Interactions on Pattern Formation in Excitable Media

  • E. Meron
Chapter
  • 106 Downloads
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

The nonlinear interactions of solitary wavefronts in excitable media are determined by the manner of recovery to the rest state. The distance between a pair of wavefronts tends to lock at one of countably many possible values in the case of oscillatory recovery, while it increases indefinitely when the recovery is monotonic. We derive these results from the basic reaction diffusion equations and study the implications on pattern formation in one and two space dimensions. In particular we demonstrate how spatiotemporal complexity may arise in one dimension, and discuss possible consequences of the interplay between wavefront-interactions and curvature in two dimensions.

Keywords

Solitary Wave Pattern Formation Normal Velocity Excitable Medium Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tyson, J.J. & Keener, J.P. (1988). Physica D (Amsterdam) 32, 327.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Miller, R.N. & Rinzel, J. (1981). Biophys. J. 34, 227.ADSCrossRefGoogle Scholar
  3. [3]
    Rinzel, J. & Maginu, K. (1984). In Non-Equilibrium Dynamics in Chemical Systems, Vidal, C. & Pacault, (eds.). Springer: Berlin.Google Scholar
  4. [4]
    Elphick, C., Meron, E. & Spiegel, E.A. (1988). Phys. Rev. Lett. 61, 496; Patterns of propagating pulses, Siam J. Appl. Math. , in press.ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    Elphick, C., Meron, E., Rinzel, J. & Spiegel, A. Impulse patterning and relaxational propagation in excitable media, submitted to J. Theor. Biol. Google Scholar
  6. [6]
    Dockery, J.D., Keener, J.P. & Tyson, J.J. (1988). Physica D (Amsterdam) 30, 177.ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    Pagola, A., Ross, J. & Vidal, C. (1980). J. Chem. Phys. 92, 163.CrossRefGoogle Scholar
  8. [8]
    Winfree, A.T. (1987). When Time Breaks Down. Princeton University Press: New Jersey; Electrical Instability in Cardiac Muscle: phase singularities and rotors, J. Theor. Biol., in press.Google Scholar
  9. [9]
    Agladze, K.I., Panfilov, A.V. & Rudenko, A.N. (1988). Physica D (Amsterdam) 29, 409.ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    Meron, E. (1989). Phys. Rev. Lett. 63, 684.ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    Gardner-Medwin, A.R. (1972). J. Physiol. 222, 357.Google Scholar
  12. [12]
    Spear, J.F. & Moore, E.N. (1974). Circ. Res. 35, 782.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. Meron
    • 1
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations