Advertisement

Kinematics of Wave Patterns in Excitable Media

  • A. S. Mikhailov
Chapter
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

The definitive property of an excitable medium is that it possesses a single steady state of rest, which is stable under small perturbations, and it supports undamped propagation of solitary pulses (in one dimension) or waves -such that the medium is found in the same state of rest before and after the wave has passed. Hence, in a two-dimensional medium (e.g. in a thin layer of the Belousov-Zhabotinskii solution) propagating waves might have a break.

Keywords

Vortex Ring Rotation Frequency Wave Pattern Excitable Medium Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramychev, A.Yu., Davydov, V.A. & Mikhailov, A.S. On the theory of resonance in excitable media. Biofizika, to be published.Google Scholar
  2. [2]
    Agladze, K.I., Davydov, V.A. & Mikhailov, A.S. (1987). Observation of the resonance of spiral waves in an excitable distributed medium. Pisma Zh. Eksp. Teor. Fiz. 45, 601–603. (English transi.: Sov. Phys. — JETP Letters.)Google Scholar
  3. [3]
    Brazhnik, P.K. (1988). Geometric Methods in the Theory of Autowave Patterns. Ph.D. Thesis (Dept. Physics, Moscow State Univ.).Google Scholar
  4. [4]
    Brazhnik, P.K., Davydov, V.A. & Mikhailov, A.S. (1986). Spiral waves and vortex rings in combustion with subsequent recovering of the initial properties of the medium. In Kinetics and Combustion, Proc. VIII Soviet Symp. on Combustion and Explosion, Tashkent, 1986, pp. 39–43. (Inst. Chem. Phys. , Chernogolovka.)Google Scholar
  5. [5]
    Brazhnik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1987). Vortex rings in excitable media. Zh. Eksp. Teor. Fiz. 93, 1725–1736. (English transi.: Sov. Phys. — JETP.) ADSGoogle Scholar
  6. [6]
    Brazhnik, P.K., Davydov, V.A. & Mikhailov, A.S. (1987). Kinematic approach to description of autowave processes in active media. Teor. Mat. Fiz. 74, 440–447. (English transi.: Sov. Phys. — Theor. Math. Phys.)MathSciNetGoogle Scholar
  7. [7]
    Brazhnik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1987). Dynamics of three-dimensional autowave patterns. In Proc. II Soviet Conf. on Mathematical and Computational Methods in Biology, Pushchino, pp. 118–119.Google Scholar
  8. [8]
    Brazhnik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1987). Evolution of spiral waves in nonhomogeneous and nonstationary excitable media. In Proc. II Soviet Conf. on Mathematical and Computational Methods in Biology, Pushchino, pp. 119–120.Google Scholar
  9. [9]
    Brazhnik, P.K., Davydov, V.A., Zykov, V.S. & Mikhailov, A.S. (1988). Drift and resonance of spiral waves in excitable media. Izv. VUZ. Radiofizika 31, 574–584. (English transi.: Sov. Phys. — Radiophysics.)Google Scholar
  10. [10]
    Brazhnik, P.K., Davydov, V.A. & Mikhailov, A.S. (1989) Twisted vortex in excitable medium. Izv. VUZ. Radiofizika 32, 289–293. (English transi.: Sov. Phys. — Radiophysics.)MathSciNetGoogle Scholar
  11. [11]
    Davydov, V.A. & Zykov, V.S. (1989). Spiral waves in anisotropic excitable media. Zh. Eksp. Teor. Fiz. 95, 139–148. (English transi.: Sov. Phys. — JETP.) Google Scholar
  12. [12]
    Davydov, V.A. & Zykov, V.S. Drift of spiral wave on nonuniformly curved surface. Zh. Eksp. Teor. Fiz., to be published.Google Scholar
  13. [13]
    Davydov, V.A., Mikhailov, A.S. & Zykov, V.S. (1989). Kinematical theory of autowave patterns in excitable media. In Nonlinear Waves in Active Media, Engelbrecht, Yu. (ed.). Springer: Berlin.Google Scholar
  14. [14]
    Davydov, V.A. & Mikhailov, A.S. (1987). Spiral waves in distributed active media. In Nonlinear Waves. Patterns and Bifurcations, pp. 261–279, Gaponov-Grekhov, A.V. & Rabinovich, M.I. (eds.). Nauka: Moscow.Google Scholar
  15. [15]
    Keener, J.P. (1986). A geometrical theory for spiral waves in excitable media. SI AM J. Appl. Math. 46, 1039–1056.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    Keener, J.P. & Tyson, J.J. (1986). Spiral waves in the Belousov-Zhabotinsky reaction. Physica D21, 300–324.MathSciNetGoogle Scholar
  17. [17]
    Khrustova, N.A. (1989). Diploma Thesis (Dept. Physics, Moscow State University).Google Scholar
  18. [18]
    Meron, E. & Pelce’, P. (1988). Model for spiral wave formation in excitable media. Phys. Rev. Lett. 60, 1880–1883.ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    Pertsov, A.M., Panfilov, A.V. & Ermakova, E.A. (1984). Numerical simulation of spiral waves in active media. Physica D14, 117–125.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Tyson, J.J. & Keener, J.P. (1987). Spiral waves in a model of myocardium. Physica D29, 215–222.zbMATHGoogle Scholar
  21. [21]
    Zykov, V.S. (1975). Investigations of some properties of self-sustained acitvity in excitable medium. In Controlling Complex systems, pp. 59–66, Tsypkin, Ya.A. (ed.). Nauka: Moscow.Google Scholar
  22. [22]
    Zykov, V.A. (1980). Kinematics of steady circulation in excitable medium. Biofizika 25, 319–322. (English transi.: Sov. Phys.Biophysics.)Google Scholar
  23. [23]
    Zykov, V.A. (1980). An analytical estimate of dependence of propagation speed of excitation wave in two-dimensional excitable medium on the curvature of its front. Biofizika 25, 888–892. (English transi.: Sov. Phys. — Biophysics.)Google Scholar
  24. [24]
    Zykov, V.S. & Morozova, O.L. (1980). Circulation frequency of spiral wave and form of excitation pulse. Biofizika 25, 1071–1076. (English transi.: Sov. Phys. — Biophysics.) Google Scholar
  25. [25]
    Zykov, V.S. (1984). Simulation of Wave Processes in Excitable Media. Nauka: Moscow. (English translation: Manchester University Press, 1987).Google Scholar
  26. [26]
    Zykov, V.S. (1986). Cycloidal circulation of spiral waves in excitable medium. Biofizika 31, 862–865. (English transi.: Sov. Phys. - Biophysics.Google Scholar
  27. [27]
    Zykov, V.S. (1987). Kinematics of nonsteady circulation of spiral waves in excitable medium. Biofizika 32, 337–430 (English transi.: Sov. Phys. - Biophysics.)Google Scholar
  28. [28]
    Zykov, V.S. & Morozova, O.L. (1988). Kinematic method of investigation of stability of spiral autowaves. Preprint, Inst, of Control Science, Moscow.Google Scholar
  29. [29]
    Wiener, N. & Rosenblueth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. S. Mikhailov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR

Personalised recommendations