Skip to main content

Diffusion and Clustering of Helium in Noble Metals

  • Chapter
Fundamental Aspects of Inert Gases in Solids

Part of the book series: NATO ASI Series ((NSSB,volume 279))

Abstract

Migration of helium in gold was investigated by electrical resistivity measurements after implantation at 5 K with energies below the threshold for defect production. Annealing experiments indicated mobility of interstitial helium in Au already at 5 K. After room temperature implantation, diffusion coefficients of substitutional helium in Cu, Ag and Au were determined by thermal helium desorption spectroscopy during and after implantation. By comparison to self diffusion data and to experimental dissociation energies the operating diffusion mechanisms were determined. These are the vacancy mechanism in gold and probably also in silver, and the dissociative mechanism in copper. At temperatures below 673 K and 775 K, helium diffusion in gold and silver is promoted by implantation induced vacancies. Retention of helium by clustering was quantitatively analyzed in terms of stability of small helium clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Thomas and R. Bastasz, J. Appl. Phys. 52, 6426 (1981).

    Article  ADS  Google Scholar 

  2. G.J. Thomas, W.A. Swansinger and M.I. Baskes, J. Appl. Phys. 40, 851 (1979).

    Google Scholar 

  3. D.B. Poker and J.M. Williams, Appl. Phys. Lett. 40, 851 (1982).

    Article  ADS  Google Scholar 

  4. V. Philips and K. Sonnenberg, J. Nucl. Mater. 114, 95 (1983).

    Article  ADS  Google Scholar 

  5. D.B. Poker, Radiat. Effects 78, 101 (1983).

    Article  Google Scholar 

  6. J. Amano and D.N. Seidman, J. Appl. Phys. 56, 983 (1984).

    Article  ADS  Google Scholar 

  7. A. Wagner and D.N. Seidman, Phys. Rev. Lett. 42, 515 (1979).

    Article  ADS  Google Scholar 

  8. M. Deicher, G. Grübel, E. Recknagel, W. Reiner and T. Wichert, Mat. Sci. Eng. 69, 57 (1985).

    Article  Google Scholar 

  9. T. Wichert, M. Deicher, G. Grübel, E. Recknagel and W. Reiner, Phys. Rev. Lett. 55, 726 (1985).

    Article  ADS  Google Scholar 

  10. R. Vaßen and P. Jung, Phys. Rev. B37, 2911 (1988).

    Article  ADS  Google Scholar 

  11. P. Jung and R. Lässer, Phys. Rev. B37, 2844 (1988).

    Article  ADS  Google Scholar 

  12. H.J. Odenthal, thesis, RWTH Aachen, Germany, unpublished.

    Google Scholar 

  13. R. Vaßen, thesis, RWTH Aachen, Germany, unpublished and Ref. 10.

    Google Scholar 

  14. W. Bauer and A. Sosin, J. Appl. Phys. 35, 703 (1964).

    Article  ADS  Google Scholar 

  15. F. Dworschak, G. Holfelder and H. Wollenberger, Radiat. Effects 59, 35 (1981).

    Article  Google Scholar 

  16. J.P. Biersack and L.G. Haggmark, Nucl. Instr. Meth. 174, 257 (1980).

    Article  Google Scholar 

  17. A.S. Soltan, thesis Assiut University, Egypt, unpublished.

    Google Scholar 

  18. V. Sciani and P. Jung, Radiat. Effects 78, 87 (1983).

    Article  Google Scholar 

  19. V. Philipps, K. Sonnenberg and J.M. Williams, J. Nucl. Mater. 107, 271 (1982).

    Article  ADS  Google Scholar 

  20. P. Jung and K. Schroeder, J. Nucl. Mater. 155–157, 1137 (1988).

    Article  ADS  Google Scholar 

  21. R.W. Balluffi, J. Nucl. Mater. 69 & 70, 240 (1978).

    Article  ADS  Google Scholar 

  22. M.I. Baskes and C.F. Melius, Phys. Rev. B20, 3197 (1979).

    Article  ADS  Google Scholar 

  23. A. van Veen, Materials Sci. Forum 15–18, 3 (1987).

    Article  Google Scholar 

  24. R. Vaßen and P. Jung, to be published.

    Google Scholar 

  25. N.L. Peterson, J. Nucl. Mater. 69 & 70, 3 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jung, P. (1991). Diffusion and Clustering of Helium in Noble Metals. In: Donnelly, S.E., Evans, J.H. (eds) Fundamental Aspects of Inert Gases in Solids. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3680-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3680-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3682-0

  • Online ISBN: 978-1-4899-3680-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics