Skip to main content

Simulating the Behaviour of Inert Gases in UO2

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 279))

Abstract

The behaviour of He, Ne, Ar, Kr and Xe in UO2 has been investigated using the semi-classical Mott-Littleton simulation technique. The interactions of the gas atoms with the lattice show two extremes of behaviour characterised by the properties of Xe and He. Xenon is very insoluble—its retention in U02 is a consequence of the large activation energy necessary for diffusion (>3eV). The most stable solution site for Xe is a function of stoichiometry: in UO2-x, the solution energy is lowest at a tri-vacancy; in UO2, at a di-vacancy and in UO2+x, at a uranium vacancy. In comparison with xenon, helium is small and readily accommodated at either a defect or interstitial site (solution energy -0.1 eV). Despite this, in the perfect lattice, He exhibits a barrier of ~4eV to diffusion between interstitial sites. However, in the presence of defects, diffusion barriers are reduced to ~0.2eV. These results are discussed with respect to the range of vacancy and vacancy clusters (solution sites) of the type expected in a highly defective or radiation damaged material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kleykamp, J. Nucl. Mater. 131, 221 (1985)

    Google Scholar 

  2. S. Imato, J. Nucl. Mater. 140, 19 (1986).

    Article  ADS  Google Scholar 

  3. J.A. Turnbull and R.M. Cornell, J. Nucl. Mater. 41, 156 (1971).

    Article  ADS  Google Scholar 

  4. Hj. Matzke, Rad. Effects, 53, 219 (1980).

    Article  Google Scholar 

  5. D.A. Maclnnes and P.W. Winter, J. Phys. Chem. Solids, 49, 143 (1988).

    Article  ADS  Google Scholar 

  6. Hj. Matzke and J.A. Davies, J. Appl. Phys. 38, 805 (1967).

    Article  ADS  Google Scholar 

  7. C.R.A. Catlow, Proc. Roy. Soc. Lond. A. 353, 533 (1977).

    Article  ADS  Google Scholar 

  8. C.R.A. Catlow, Proc. Roy. Soc. Lond. A. 364, 473 (1978).

    Article  ADS  Google Scholar 

  9. R.A. Jackson, A.D. Murray, J.H. Harding and C.R.A. Catlow, Phil. Mag. A. 53, 27 (1986).

    Article  ADS  Google Scholar 

  10. R.A. Jackson and C.R.A. Catlow, J. Nucl. Mater. 127, 161 (1985).

    Article  ADS  Google Scholar 

  11. R.A. Jackson and C.R.A. Catlow, J. Nucl. Mater.127, 167 (1985).

    Article  ADS  Google Scholar 

  12. R. W. Grimes, C. R. A. Catlow and A. M. Stoneham, J. Am. Cer. Soc. 72, 1856 (1989).

    Article  Google Scholar 

  13. R. G. J. Bail and R. W. Grimes, J. Chem. Soc. Faraday Trans. 86, 1257 (1990).

    Article  Google Scholar 

  14. R.W. Grimes, R.E. Miller and C.R.A. Catlow, J. Nucl. Mater. 172, 123 (1990).

    Article  ADS  Google Scholar 

  15. M. Billaux, M. Lippens, D. Boulanger and H. Nidifi, IWGFPT/32, p. 182, International Atomic Energy Agency, Vienna, 1989.

    Google Scholar 

  16. D. Cubicciotti, J. Nucl. Mater. 154, 53 (1988).

    Article  ADS  Google Scholar 

  17. R.G.J. Bail, W.G. Burns, J. Henshaw, M.A. Mignanelli and P.E. Potter, J. Nucl. Mater. 167, 191 (1989).

    Article  ADS  Google Scholar 

  18. F.T. Ewart, R.G. Taylor, J.M. Horspool and G. James, J. Nucl. Mater. 61, 254 (1976).

    Article  ADS  Google Scholar 

  19. L.M. Kovba, Dokl. Chem. (Engl. Trans.), 194, 632 (1970).

    Google Scholar 

  20. R.E. Latta and R.E. Fryxell, J. Nucl. Mater. 35, 195 (1970).

    Article  ADS  Google Scholar 

  21. Hj. Matzke, J. Chem. Soc. Faraday Trans. 83, 1121 (1987).

    Article  Google Scholar 

  22. N.F. Mott and M.J. Littleton, Trans. Faraday Soc. 34, 485 (1938).

    Article  Google Scholar 

  23. M.J. Norgett and R. Fletcher, J. Phys. C3, L190 (1970).

    ADS  Google Scholar 

  24. M.J. Norgett, United Kingdom Atomic Energy Authority Report AERE-R. 7650 (1974).

    Google Scholar 

  25. J.H. Harding and A.H. Harker, United Kingdom Atomic Energy Authority Report AERE-R. 10425 (1982).

    Google Scholar 

  26. J. C. Slater and J. G. Kiikwood, Phys. Rev. 37, 682 (1931).

    Article  ADS  Google Scholar 

  27. M. F. Guest, J. Kendrick and S. A. Pope, Program GAMESS Documentation, SERC Daresbury Laboratory, (1983).

    Google Scholar 

  28. C.R.A. Catlow and W.C. Mackrodt (eds), Computer Modelling of Solids, Springer Lecture Notes in Physics, vol 166 Springer, Berlin Ch. 1, Ch.10 (1982).

    Google Scholar 

  29. R.W. Grimes, Mol. Sim. 5, 9 (1990).

    Article  Google Scholar 

  30. B.G. Dick and A.W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  31. W. Cochran, The Dynamics of Atoms in Crystals, p.55. Arnold, London (1973).

    Google Scholar 

  32. J.H. Harding, P. Masri, and A.M. Stoneham, J. Nucl. Mater. 92, 73 (1980).

    Article  ADS  Google Scholar 

  33. C.R.A. Caüow and B.E.F. Fender, J. Phys. C, 8, 3267 (1975).

    Article  ADS  Google Scholar 

  34. C.R.A. Catlow and R. James, Proc. Roy. Soc. Lond. A. 384, 157 (1982).

    Article  ADS  Google Scholar 

  35. R.A. Jackson and C.R.A. Caüow, Mol. Sim. 1, 207 (1988).

    Article  Google Scholar 

  36. D.R. Collins and C.R.A. Caüow, submitted to Am. Min.

    Google Scholar 

  37. See for example, D. E. Rimmer and A. H. Cottrell, Phil. Mag. 2, 1345 (1957)

    Article  ADS  Google Scholar 

  38. C. F. Melius, W. D. Wilson and C. L. Bisson, Rad. Effects, 53, 111 (1980).

    Article  Google Scholar 

  39. R.W. Grimes, C.R.A. Caüow and A.M. Stoneham, J. Phys.: Condens. Matter. 1, 7367 (1989).

    ADS  Google Scholar 

  40. R.W. Grimes and C.R.A. Caüow, Philos. Trans. R. Soc. Lond. (1991), in press.

    Google Scholar 

  41. Hj. Matzke and H. Blank, J. Nucl. Mater. 166, 120 (1989).

    Article  ADS  Google Scholar 

  42. K.C. Kim and D.R. Olander, J. Nucl. Mater. 102, 192 (1982).

    Article  ADS  Google Scholar 

  43. M.S. Seltzer, J.S. Perrin, A.H. Clauer and B.A. Wilcox, Reactor Tech. 14, 99 (1971).

    Google Scholar 

  44. J.L. Routbort, N.A. Javed and J.C. Voglewede, J. Nucl. Mater. 42, 297 (1972).

    Article  Google Scholar 

  45. J.H. Harding, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grimes, R.W. (1991). Simulating the Behaviour of Inert Gases in UO2 . In: Donnelly, S.E., Evans, J.H. (eds) Fundamental Aspects of Inert Gases in Solids. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3680-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3680-6_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3682-0

  • Online ISBN: 978-1-4899-3680-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics