Skip to main content

Helium Bubble Nucleation in Aluminium Irradiated with 600 MeV Protons

  • Chapter
  • 372 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 279))

Abstract

During 600 MeV proton irradiation, helium, hydrogen and other impurities are produced simultaneously with the displacement damage. Transmission election microscopy was used to characterize the bubble structure in aluminum after different irradiation temperatures (390 K-750 K) and doses (0.9 dpa-6.0 dpa). For low irradiation temperature, between 390 K and about 500 K, the observed homogeneous bubble structure was interpreted with a diatomic nucleation model. In the temperature regime between 500 K and 600 K, a bimodal bubble size distribution was observed in one specimen. For higher irradiation temperature, up to 750 K, two different behaviours appear: in the first case, specimens show the same behaviour as was observed at lower irradiation temperatures; in the other case, a lower bubble density (up to 50 times lower) of bigger bubbles was observed. This bifurcation at high irradiation temperatures is not yet well understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Farrell and J.T. Houston, proc. conf 750989 on Radiation Effects and Tritium Technology for Fusion reactors 2, 209 (1976).

    Google Scholar 

  2. T. Muroga, H. Watanabe, K. Araki and N. Yoshida, J. Nucl. Mater. 155–157, 1290 (1988).

    Article  ADS  Google Scholar 

  3. P. L. Lane and P. J. Goodhew, Phil. Mag. A48, 965 (1983).

    Article  Google Scholar 

  4. K. Ono, M. Inoue, T. Kino, S. Furuno and K. Izui, J. Nucl. Mat. 133 & 134, 477 (1985).

    Article  Google Scholar 

  5. J. W. Muncie and D. J. Mazey, J. Nucl. Mater. 154, 204 (1988).

    Article  ADS  Google Scholar 

  6. K. Farrell and E.H. Lee, Radiation-Induced Changes in Microstructure: 13th Symp. ASTM STP 955, 1 498 (1987).

    Google Scholar 

  7. W.V. Green, M. Victoria and S.L. Green, J. Nucl. Mat 133–134, 58 (1985).

    Article  ADS  Google Scholar 

  8. S.L. Green, Damage and impurity calculations relating to PIREXII, EIR technical internal report, TM-22–85–69 (1985).

    Google Scholar 

  9. D. Gavillet, R. Gotthardt, J-L. Martin, S.L. Green, W.V. Green and M. Victoria, Effects of Radiation on Materials 12th Symp. ASTM STP 870, 1, 394 (1985).

    Google Scholar 

  10. D. Gavillet, M. Victoria, W.V. Green, R. Gotthardt and J-L. Martin, J. Nucl. Mat. 155–157, 992 (1988).

    Article  ADS  Google Scholar 

  11. F. Paschoud, R. Gotthardt and S.L. Green, Radiation-Induced Changes in Microstructure: 13th Symp. ASTM STP 955, 1, 478 (1987).

    Google Scholar 

  12. J-L. Vergey-Gaugry, D. Gavillet, W.V. Green, M. Victoria, J-L. Martin and R. Gotthardt, EIR technical internal report, TM-22–85–56 (1985).

    Google Scholar 

  13. H. Trinkaus, Rad. Effects 101, 91 (1986).

    Article  Google Scholar 

  14. V. Sciani and P. Jung, Rad. Effects 78, 87 (1983).

    Article  Google Scholar 

  15. H. Trinkaus, J. Nucl. Mat. 118, 39 (1983).

    Article  ADS  Google Scholar 

  16. N.M. Ghoniem, S. Sharafat, J.M. Williams and L.K. Mansur, J. Nucl. Mat 117 96 (1983).

    Article  ADS  Google Scholar 

  17. H. Trinkaus, Rad. Effects 78, 189 (1983).

    Article  Google Scholar 

  18. F. Paschoud, Contribution à l’étude de la microstructure de l’aluminium irradié par des protons de 590 MeV, Thesis No. 834, E.PP.L, (1990).

    Google Scholar 

  19. J. A. Spitznagel, W.J. Choyke, N.J. Doyle, R.B. Irwin, J.R. Townsend and J.N. McGmer, J. Nucl. Mat 108–109, 537 (1982).

    Article  ADS  Google Scholar 

  20. L.K. Mansur and W.A. Coghlan, J. Nucl. Mat. 119, 1 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paschoud, F., Victoria, M., Gotthardt, R. (1991). Helium Bubble Nucleation in Aluminium Irradiated with 600 MeV Protons. In: Donnelly, S.E., Evans, J.H. (eds) Fundamental Aspects of Inert Gases in Solids. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3680-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3680-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3682-0

  • Online ISBN: 978-1-4899-3680-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics