Skip to main content

Application of Conjugate Gradient Method for the Solution of Large Matrix Problems

  • Chapter
Directions in Electromagnetic Wave Modeling

Abstract

The conjugate gradient method (CGM) has found a wide variety of applications in electromagnetics and in signal processing. In addition, CGM when used in conjunction with FFT (CGFFT) is extremely efficient for solving Hankel and Toeplitz or block Toeplitz matrix systems which frequently arise in both electromagnetics and signal processing applications. The FFT may be utilized because of the convolutional nature of the matrix. CGM has also been used in adaptive spectral estimation. In this paper, a novel application of the conjugation gradient method in the determination of far-field antenna patterns via a near-field to far-field transformation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey of numerical methods for solution of large systems of linear equations for electromagnetic field problems”, IEEE Trans on Antennas and Propagat., vol. AP-29, pp. 847–856, Nov. 1981.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of FFT and the conjugate gradient method for the solution of electromagetic radiation for electrically large and small conducting bodies”, IEEE Trans on Antennas and Propagat., vol. AP-34, pp. 635–640, May 1986.

    Article  ADS  Google Scholar 

  3. C. C. Su, “Calculation of electromagnetic scattering from a dielectric cylinder using the Conjugate Gradient Method and FFT”, IEEE Trans. on Antennas and Propagat5., vol. AP-3, pp. 1418–1425, Dec. 1987.

    ADS  Google Scholar 

  4. Su, C. C., “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneity and anistropy”, IEEE Trans. on Antennas and Propagat., vol. AP-37, 384–389, Mar. 1989.

    Article  ADS  MATH  Google Scholar 

  5. M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the Conjugate Gradient Method and the Fast Fourier Transform”, IEEE Trans on Antennas and Propagat., vol. AP-37, pp. 528–537, May, 1989.

    Article  ADS  Google Scholar 

  6. T. K. Sarkar and X. Yang, “Efficient solution of Hankel systems utilizing FFTs and the Conjugate Gradient Method”, Proc. of International Conf. on Acoustics, Speech and Signal Processing (ICASSP 86), Dallas, TX, pp. 1835–1838, May 1987.

    Google Scholar 

  7. H. Chen, T. K. Sarkar, S. A. Dianat and J. D. Brule, “Adaptive spectral estimation by the Conjugate Gradient Method”, IEEE Trans. on ASSP, vol. ASSP-34, pp. 272–283, Apr. 1986.

    Article  Google Scholar 

  8. T. K. Sarkar, S. Ponnapalli and E. Arvas, “An accurate, efficient method of computing far-field antenna patterns from near-field measurements”, Proc. of International Conf. on Antennas and Propagation (AP-S 90), Dallas, TX, May 1990.

    Google Scholar 

  9. S. Ponnapalli, “The Computation of Far-field Antenna Patterns from Near-field Measurements Using an Equivalent Current Approach”, Ph.D. dissertation, Syracuse University, December 1990.

    Google Scholar 

  10. S. Ponnapalli, “Near-field to far-field transformation utilizing the conjugate gradient method”, in Application of Conjugate Gradient Method in Electromagnetics and Signal Processing, vol. 5 in PIER, T. K. Sarkar, ED. New York: VNU Science Press, Ch. 11, December 1990.

    Google Scholar 

  11. S. Ponnapalli and T. K. Sarkar, “Near-field to far-field transformation using an equivalent current approach”, submitted to IEEE Trans. on MTT, September 1990.

    Google Scholar 

  12. J. Brown and E. V. Jull, “The prediction of aerial radiation patterns from near-field measurements”, Proc. Inst. Elec. Eng., vol. 108B, pp. 635–644, Nov. 1961.

    Google Scholar 

  13. D. M. Kerns, “Plane-wave scattering-matrix theory of antennas and antennas-antenna interaction”, NBS Monograph 162, U.S. Govt. Printing Office, Washington, DC, June 1981.

    Google Scholar 

  14. F. Jensen, “Electromagnetic near-field far-field correlations”, Ph.D. dissertation, Techn. Univ. Denmark, July 1970.

    Google Scholar 

  15. P. F. Wacker, “Near-field antenna measurements using a spherical scan: efficient dat reduction with probe correction”, in Inst. Elec. Eng. Conf. Publi. 113, Conf. Precision Electromagn. Measurements, London, July 1974, pp. 286–288.

    Google Scholar 

  16. P. F. Wacker, “Non-planar near-field measurements: spherical scanning”, NBSIR 75–809, June 1975.

    Google Scholar 

  17. W. M. Leach and D. T. Paris, “Probe-compensated near-field measurements on a cylinder”, IEEE Trans. on Antennas and Propagat., vol. AP-21, pp. 435–445, July 1973.

    Article  ADS  Google Scholar 

  18. R. F. Harrington, “Field Computation by Moment Methods”, Malabar: Robert E. Kreiger Publishing, 1968.

    Google Scholar 

  19. D. T. Paris, W. M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements”, IEEE Trans. Antennas and Propagat., vol. Ap-26, pp. 373–379, May 1978.

    Article  ADS  Google Scholar 

  20. R. E. Collin and F. J. Zucker, Antenna Theory, Part I., New York: McGraw-Hill, 4, 1969.

    Google Scholar 

  21. A. V. Oppenheim and R. W. Shafer, “Digital Signal Processing”, Englewood Cliffs, NJ: Prentice-Hall, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarkar, T.K., Ponnapalli, S., Petre, P. (1991). Application of Conjugate Gradient Method for the Solution of Large Matrix Problems. In: Bertoni, H.L., Felsen, L.B. (eds) Directions in Electromagnetic Wave Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3677-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3677-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3679-0

  • Online ISBN: 978-1-4899-3677-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics