Skip to main content

The Cloning and Expression in Xenopus laevis Oocytes of an Insect Nicotinic Acetylcholine Receptor α-Subunit

  • Chapter
Molecular Insect Science

Abstract

The central nervous system of an insect shares many chemical and some organizational features evident in the more complex nervous systems of vertebrates. In both groups of organisms nerve cells form networks that control behaviour. The functions of an increasing number of uniquely identifiable neurones are established in events such as flight and respiration of insects (Hoyle and Burrows, 1973a,b; Robertson, 1986). In order to understand fully these behaviours it is important to study the molecular components of the system. Of particular interest are the synapses which are control points in the communication between neurones. The chemical synapse plays a major role in neural integration and many different types of neurotransmitter molecules have been recognized such as acetylcholine (ACh), γ-aminobutyric acid (GABA), octopamine and glutamic acid which in turn activate their respective receptors. Although many of these neurotransmitters are also present in the vertebrate CNS, it is becoming increasingly clear that some insect receptors including the nicotinic acetylcholine receptor (nAChR) have different pharmacological properties from those of their vertebrate counterparts (Sattelle, 1980, 1988; Benson, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard, E.A., Darlison, M.G., Marshall, J. and Sattelle, D.B. 1989. Structural characterizations of anion and cation channels directly operated by agonists, pp. 159–176 in: “Ion Transport.” Kweeling, D. and Benham, C. eds. Academic Press, London..

    Chapter  Google Scholar 

  • Benson, J.A. 1988a. Transmitter receptors on insect neuronal somata: GABAergic and cholinergic pharmacology, pp. 193–206 in: “Neurotox 1988: Molecular Basis of Drug and Pesticide Action.” G.G. Lunt, ed. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Benson, J.A., 1988b. Pharmacology of a locust-thoracic ganglion somal nicotinic acetylcholine receptor. pp. 227–240 in: “Nicotinic Receptors in the Nervous System.” Clementi, F., Gotti, C. and Sher, E. eds. Springer Verlag, Berlin.

    Google Scholar 

  • Blair, L.A.C., Levitan, E.S., Marshall, J., Dionne, V.E. and Barnard, E.A. 1988. Single subunits of the receptor form ion channels with properties of the native receptor. Sciene 242: 577–579.

    Article  CAS  Google Scholar 

  • Bossy, B., Ballivet, M. and Spierer, P. 1988. Conservation of neuronal nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous system. EMBO. J. 7: 611–618.

    PubMed  CAS  Google Scholar 

  • Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. 1987. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identified a gene family. Proc. Natl. Acad. Sci. USA. 84: 7763–7767.

    Article  PubMed  CAS  Google Scholar 

  • Breer, H., Kleene, R. and Hinz, G. 1985. Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J. Neurosci. 5: 3386–3392.

    PubMed  CAS  Google Scholar 

  • Buckingham, S.D., Sattelle, D.B. and Hue, B. 1990. Synaptic and extrasynaptic actions of bicuculline on identified insect neurones. J. Exp. Biol. in press.

    Google Scholar 

  • Carr, C.E. and Fourtner, C.R. 1980. Pharmacological analysis of a monosynaptic reflex in the cockroach Periplaneta americana. J. Exp. Biol. 86: 259–273.

    CAS  Google Scholar 

  • Chiappinelli, V. A., Hue, B., Mony, L. and Sattelle, D.B. 1989. K-Bungarotoxin blocks nicotinic transmission at an identified invertebrate synapse. J. Exp. Biol. 141: 61–71.

    PubMed  CAS  Google Scholar 

  • David, J.A. and Sattelle, D.B. 1984. Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motor neurone of the cockroach Periplaneta americana. J. Exp. Biol. 108: 119–136.

    CAS  Google Scholar 

  • Deneris, E.S., Connolly, J., Boulter, J., Wada, E., Wada, K., Swanson, L.W., Patrick, J. and Heinemann, S. 1988. Primary structure and expression of β2: A novel subunit of neuronal nicotinic acetylcholine receptors. Neuron. 1: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J.A., Schmidt, J.T. and Oswald, R.E. 1980. Effect of α-bungarotoxin in retinotectal synaptic transmission in goldfish and toad. Neurosci. 5: 929–942.

    Article  CAS  Google Scholar 

  • de la Garza, R., Hoffer, B.J. and Freedman, R. 1988. Heterogeneity of nicotinic actions in the rat cerebellum. pp. 887–891 in: “Nicotinic Acetylcholine Receptors in the Nervous System.” Clementi, F., Gotti, C. and Sher, E., eds. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Goldman, D., Deneris, E., Luyten, W., Kochlar, A., Patrick, J. and Heinemann, S. 1987. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48: 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E.D. and Betz, H.. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, W. and Breer, H. 1986. Channel properties of a neuronal acetylcholine receptor protein purified from the central nervous system of insect reconstituted in planar lipid bilayers. Nature 321: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Harrow, I.D., David, J.A. and Sattelle, D.B. 1983. Acetylcholine receptors on identified insect neurones. pp. 12–31 in: “Neuropharmacology of Insects” O’Connor, M. and Whelan, J., eds. Pitman, London.

    Google Scholar 

  • Harrow, I.D. and Sattelle, D.B. 1982. Acetylcholine receptors on the cell body membrane of giant interneurone 2 in the cockroach Periplaneta americana. J. Exp. Biol. 105: 339–350.

    Google Scholar 

  • Hermans-Borgmeyer, I., Zopf, D., Ryseck, R.P., Hovemann, B., Betz, H. and Gundelfinger, E.D. 1986. Primary structure of a developmentally regulated nicotinic acetylcholine receptor from Drosophila. EMBO. J. 5: 1503–1508.

    PubMed  CAS  Google Scholar 

  • Hoyle, G. and Burrows, M. 1973a. Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified motor neurons in the metathoracic ganglion. J. Neurobiol. 4: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle, G. and Burrows, M. 1973b. Neural mechanisms underlying behavior in the locust Schistocerca gregaria. II. Integrative activity in metathoracic neurons. J. Neurobiol. 4: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Kao, P.N. and Karlin, A. 1986. Acetylcholine receptor binding site contains a disulphide crosslink between adjacent half-cystinyl residues. J. Biol. Chem. 261: 8085–8090.

    PubMed  CAS  Google Scholar 

  • Kao, P.N., Dwark, A.J., Kaldany, R.J., Silver, M.L., Widerman, J., Stein, S. and Karlin, A. 1984. Identification of the α-subunit half-cysteine specifically labelled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259: 1162–1168.

    Google Scholar 

  • Lane, N.J., Swales, L.S., David, J.A. and Sattelle, D.B. 1982. Differential accessibility to two insect neurones does not account for differences in sensitivity to α-bungarotoxin. Tissue Cell 14: 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Lees, G., Beadle, DJ. and Botham, R.P. 1983. Cholinergic receptors on cultured neurones from the CNS of embryonic cockroach. Brain Res. 288: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J., Darlison, M.G., Lunt, G.G. and Barnard, E.A. 1988a. Cloning of a putative nicotinic acetylcholine receptor gene from locust. Biochem. Soc. Trans. 16: 463.

    PubMed  CAS  Google Scholar 

  • Marshall, J., David, J.A., Darlison, M.G., Barnard, E.A. and Sattelle, D.B. 1988b. Pharmacology, cloning and expression of insect nicotinic acetylcholine receptors. pp 257–281 in: “Nicotinic Acetylcholine Receptors in the Nervous System.” Clementi, F., Gotti, C., and Sher, E., eds. Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Nef, P., Onegser, C., Alliod, C., Couturiers, S. and Ballivet, M. 1988. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO. J. 7: 595–601.

    PubMed  CAS  Google Scholar 

  • Numa, S. 1986. Molecular basis for the function of ion channels. pp. 119–143 in: “Molecular Neurobiology.” Kay, J.,ed. Biochemical Society, London.

    Google Scholar 

  • Pinnock, R.D., Lummis, S.C.R., Chiappinelli, V.A. and Sattelle, D.B. 1988. Actions of potent cholinergic anthelminitics (morantel, pyrantel and levamisole) on an identified insect neurone reveal pharmacological differences between nematode and insect acetylcholine receptors. Neuropharm. 27: 843–848.

    Article  CAS  Google Scholar 

  • Raftery, M.A., Hunkapiller, M.W., Strader, CD. and Hood, L.E. 1980 Acetylcholine receptor: Complex of homologous subunits. Science 208: 1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, R.M. 1986. Neuronal circuits controlling flight in the locust: central generation of rhythm. TINS 9: 278–281.

    Google Scholar 

  • Sattelle, D.B. 1980. Acetylcholine receptors of insects. Adv. Insect Physiol. 15: 215–315.

    Article  CAS  Google Scholar 

  • Sattelle, D.B. and David, J.A. 1983. Voltage dependent block by histrionicotoxin of the acetylcholine-induced currents in an insect motorneurone cell body. Neurosci. Lett. 43: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Sattelle, D.B., Harrow, I.D., Hue, B., Pelhate, M., Gepner, J.I. and Hall, L.M. 1983. α- Bungarotoxin blocks excitatory neurotransmission between cercal sensory neurones and giant interneurone 2 of the cockroach Periplaneta americana. J. Exp. Biol. 107: 473–489.

    CAS  Google Scholar 

  • Sattelle, D.B. 1988. Synaptic and extrasynaptic neuronal nicotinic receptors of insects pp. 563–582, in: “The Molecular Basis of Drug and Pesticide Action.” Lunt, G. C., ed. Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Schmieden, V., Grenningloh, C., Schofield, P.R. and Betz, H. 1989. Functional expression in Xenopus oocytes of the strychnine binding 48kd subunit of the glycine receptor. EMBO. J. 8: 695–700.

    PubMed  CAS  Google Scholar 

  • Schofield, P.R., Darlison, M.C., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguex, H., Rhee, L.M., Ramachandran, J., Reale, V., Glencorse, T.A., Seeburg, P.H. and Barnard, E.A. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, F.A. 1988. Understanding the GABAA receptor: a chemically gated ion channel. Biochem. J. 249: 21–32.

    PubMed  CAS  Google Scholar 

  • Wafford, K.A. and Sattelle, D.B. 1989. L-glutamate receptors on the cell body membrane of an identified insect motor neurone. J. Exp. Biol. 144: 449–462.

    Google Scholar 

  • Whiting, P. and Lindstrom, J. 1987. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. USA 84: 595–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marshal, J., Barnard, E.A., Sattelle, D.B. (1990). The Cloning and Expression in Xenopus laevis Oocytes of an Insect Nicotinic Acetylcholine Receptor α-Subunit. In: Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G., Law, J.H. (eds) Molecular Insect Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3668-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3668-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3670-7

  • Online ISBN: 978-1-4899-3668-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics