Skip to main content

Isolation, Characterization and Progress in Cloning of Cyclodiene Insecticide Resistance in Drosophila melanogaster

  • Chapter
Molecular Insect Science

Abstract

Insecticide resistance is an increasingly serious problem for the control of medically and agriculturally important pests. More than 447 species of arthropods have evolved resistance to one or more pesticides; some 17 species have shown resistance to all five major classes of insecticides often outstripping the rate at which new pesticides (or even non-pesticidal controls) can be introduced to replace them (Georghiou 1986). Insecticide resistance is also a dramatic example of adaptation at the molecular level. The majority of cases of practically significant resistance in the field are due to single major genes (Roush & McKenzie 1987, Roush and Daly 1990), that either increase the metabolism of pesticides or cause insensitivity in the target site (Soderlund &Bloomquist 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bender, W., Spierer, P. and Hogness, D.S. 1983. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J. Mol. Biol. 168: 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Berge, J.B. and Fournier, D. 1988. Advances in molecular genetics of acetylcholinesterase insensitivity in insecticide-resistant insects, p. 461 in: “Procedings XVIII International Congress of Entomology.” Vancouver.

    Google Scholar 

  • Dillela, A.G. and Woo S.L.C. 1985. Cosmid cloning of genomic DNA. Focus (Bethesda Research Laboratories) Vol. 7(2): 5.

    Google Scholar 

  • Eldefrawi, A.T. and Eldefrawi, M.E. 1987. Receptors for γ-aminobutyric acid and voltage-dependent chloride channels as targets for drugs and toxicants. FASEB J. 1: 262–271.

    PubMed  CAS  Google Scholar 

  • Feyereisen, R., Koener, J.F., Farnsworth, D.E. and Nebert, D.W. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. USA. 86: 1465–1469.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant, R.H. and Roush, R.T. 1990. Gene mapping and cross-resistance in cyclodiene insecticide resistant Drosophila melanogaster. Genebical Research. In press.

    Google Scholar 

  • ffrench-Constant, R.H., Roush, R.T., Mortlock, D. and Dively, G.P. 1990. Isolation of dieldrin resistance from field populations of Drosophila melanogaster. J. Econ. Entomol. In press.

    Google Scholar 

  • Field, L.M., Devonshire, A.L. and Forde, B.G. 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae) results from amplification of an esterase gene. Biochem. J. 251: 309–312.

    PubMed  CAS  Google Scholar 

  • Foster, G.G., Whitten, M.J., Konovalov, C., Arnold, J.T.A. and Maffi, G. 1981. Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R-D. and possible correlations with the linkage maps of Musca domestica and Drosophila melanogaster. Genet. Res. 37: 55–69.

    Article  Google Scholar 

  • Georghiou, G.P. 1986. The magnitude of the resistance problem. pp. 14–43 in: “Pesticide resistance: Strategies and tactics for management.” National Academy of Sciences, ed. National Academy Press: Washington, D.C.

    Google Scholar 

  • Houpt, D.R., Pursey, J.C. and Morton, R.A. 1988. Genes controlling malathion resistance in a laboratory selected population of Drosophila melanogaster. Genome 30: 844–853.

    Article  PubMed  CAS  Google Scholar 

  • Kadous, A.A., Ghiasuddin, S.M., Matsumura, F., Scott, J.G. and Tanaka, K. 1983. Difference in the picrotoxinin receptor between the cyclodiene resistant and susceptible strains of the German cockroach. Pestic. Biochem. Physiol. 19: 157–166.

    Article  CAS  Google Scholar 

  • Kasbekar, D.P. and Hall, L.M. 1988. A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides. Pestic. Biochem. Physiol. 32: 135–145.

    Article  CAS  Google Scholar 

  • Leicht, B.G. and Bonner, J.J. 1988. Genetic analysis of chromosomal region 67A-D of Drosophila melanogaster. Genetics. 119: 579–593.

    PubMed  CAS  Google Scholar 

  • Morton, R.A. and Singh, R.S. 1982. The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochem. Gen. 20: 179–198.

    Article  CAS  Google Scholar 

  • Oppenoorth, F.J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773 in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology.” vol 12. G.A. Kerkut and L.I. Gilbert, ed. Pergamon, New York.

    Google Scholar 

  • Pardue, ML. 1986. In situ hybridization to DNA of chromosomes and nuclei. pp. 111–137 in: “Drosophila, A Practical Approach”. D.B. Roberts, ed. IRL Press, Oxford, England.

    Google Scholar 

  • Roush, R.T. and Daly, J. 1990. The role of population genetics in resistance research and management. in: “Pesticide Resistance in Arthropods.” Roush, R.T. and Tabashnik, B.E., eds. Chapman and Hall, New York. in press.

    Google Scholar 

  • Roush, R.T. and McKenzie, J.A. 1987. Ecological genetics of insecticide and acaricide resistance. Ann. Rev. Entomol. 32: 361–380.

    Article  CAS  Google Scholar 

  • Schofield, P.R., Darlison, M.G., Fugita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Reale, V., Glencorse, T.A., Seeburg, P. H. and Barnard, E. A. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Soderlund, D.M. and Bloomquist, J.R. 1990. Molecular mechanisms of insecticide resistance. in: “Pesticide Resistance in Arthropods.” Roush, R.T. and Tabashnik, B.E., eds. Chapman and Hall, New York. in press.

    Google Scholar 

  • Tanaka, K. 1987. Mode of action of compounds acting at inhibitory synapse. J. Pestic. Sci. 12: 549–560.

    Article  CAS  Google Scholar 

  • Waters, L.C. and Nix, C.E. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosoohila melanogaster. Pestic. Biochem. Physiol. 30: 214–227.

    Article  CAS  Google Scholar 

  • Wilson, T.G. 1988. Drosoohila melanogaster: A model insect for insecticide resistance studies. J. Econ. Entomol. 81: 22–27.

    PubMed  CAS  Google Scholar 

  • Wilson, T.G. and Fabian, J. 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Developmental Biology 118: 190–201.

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, J.D., Roush, R.T., Bonner, J.C and Wise, D.A. 1986. Monogenic inheritance of cyclodiene resistance in mosquito fish, Gambusia affinis. Experientia 42: 851–853.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

ffrench-Constant, R.H., Roush, R.T., MacIntyre, R.J. (1990). Isolation, Characterization and Progress in Cloning of Cyclodiene Insecticide Resistance in Drosophila melanogaster . In: Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G., Law, J.H. (eds) Molecular Insect Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3668-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3668-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3670-7

  • Online ISBN: 978-1-4899-3668-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics