Skip to main content

The Development and Release of Genetically Engineered Viral Insecticides: A Progress Report 1986–1989

  • Chapter
Molecular Insect Science

Abstract

Natural virus insecticides have been used for many years to control insect pests. The baculoviruses have found particular favour for this purpose. Unlike most chemical insecticides, they affect a limited number of insect species. They have no effect on other insects, invertebrates (such as earthworms), vertebrates or plants. Furthermore, they do not pollute the environment or cause adverse reactions in soil or water. However, they are slow to kill the target insect species, often taking several days or weeks to do so. For this reason they have not gained widespread favour in modern agricultural practices. The use of chemical insecticides is preferred because they are much faster acting agents. Despite this disadvantage, in some situations baculoviruses present a viable alternative to chemicals. These include areas that are environmentally sensitive (e.g., in forests and water catchment areas), where the costs of chemicals are prohibitive or where the pest species has developed resistance to the available chemical insecticides (e.g., Cunningham, 1982; Entwistle and Evans, 1985; Podgewaite, 1985; Huber, 1986; Evans and Entwistle, 1987). Furthermore, there is now a groundswell of public opinion opposed to the use of chemicals which has added impetus to the search for alternatives. This paper discusses the use of genetic engineering to improve baculovirus insecticides and the results of a programme to introduce these agents into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adang, M.J., Staver, M.J., Rocheleau, T.A., Leighton, J., Barker, R.F. and Thompson, D.V. 1985. Characterized full length and Bacillus ihuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, D.H.L. 1986. UK release of genetically marked virus. Nature 323: 496–496.

    Article  Google Scholar 

  • Bishop, D.H.L., Entwistle, P.F., Cameron, I.R., Allen, C.J. and Possee, R.D. 1988. Field trials with genetically-engineered baculovirus insecticides. pp 143–179 in: “The Release of Genetically-Engineered Micro-Organisms.” Sussman, M., Collins, C.H., Skinner, F.A. and Stewart-Tull, D.E., eds. Academic Press, London.

    Google Scholar 

  • Burges, H.D. ed. 1981. Microbial control of pests and plant diseases 1970–1980. Academic Press. London.

    Google Scholar 

  • Cunningham, J.C. 1982. Field trials with baculoviruses: Control of forest insect pests. pp. 335–386 in: “Microbial and Viral Insecticides.” Kurstak, E., ed. Marcel Dekker, New York.

    Google Scholar 

  • Cunningham, J.C. 1988. Baculoviruses: Their status compared to Bacillus thuringiensis as microbial insecticides. Outlook on Agriculture 17: 10–17.

    Google Scholar 

  • Entwistle, P.F., Adams, P.H.W., Evans, H.F. and Rivers, C.F. 1983. Epizootiology of a nuclear polyhedrosis virus (Baculoviridae) in European Spruce Sawfly (Gilpinia hercyniae): spread of disease from small epicentres in comparison with spread of baculovirus diseases on other hosts. J. Appl. Ecol. 20: 472–487.

    Google Scholar 

  • Entwistle, P. F. and Evans, H. F. 1985. Viral control pp. 347–412 in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology.” Kerkut, G. A. and Gilbert, L. L., eds. Pergamon Press, Oxford.

    Google Scholar 

  • Evans, H.F. and Entwistle, P.F. 1987. Viral diseases pp. 257–322. in: “Epizootiology of Insect Diseases.” Fuxa, J.R. and Tanada, Y., eds. John Wiley, U.S.A.

    Google Scholar 

  • Goldberg, L.J. and Margalit, J. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia uniguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosquito News 37: 355–358.

    Google Scholar 

  • Gonzalez, J.M., Jr., Dulmage, H.T. and Carlton, B.C. 1981. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5: 351–365.

    Article  CAS  Google Scholar 

  • Gonzalez, J.M., Jr., Brown, B.J. and Carlton, B.C. 1982. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 70: 6951–6955.

    Article  Google Scholar 

  • Hall, I.M., Arakawa, K.Y., Dulmage, H.T. and Correa, J.A. 1977. The pathogenicity of strains of Bacillus thuringiensis to larvae of Aedes and Culex mosquitoes. Mosq. News 37: 246–251.

    Google Scholar 

  • Heimpel, A.M., and Angus, T.A. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. J. Insect Path. 1: 152–170.

    Google Scholar 

  • Held, G.A., Bulla, L.A., Jr., Ferrari, E., Hoch, LA., Aronson, A.I., and Minnich, S.A. 1982. Cloning and localization of the lepidopteran protoxin gene of Bacillus thuringiensis subs. kurstaki. Proc. Natl. Acad. Sci. USA 79: 6065–6069.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, C., Luthy, P., Hutter, R. and Pliska, V. 1988a. Binding of the delta endotoxin from Bacillus thruingiensis to brush-border membrane vesicles of the cabbage butterfly Pieris brassicae. Europ. J. Bioc. 173: 85–91.

    Article  Google Scholar 

  • Hoffman, C., Vanderbruggen, H., Hofte, H., Van Rie, L, Jansens, S. and Van Mellaert, H. 1988b. Specificity of Bacillus thuringiensis 5-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844–7848.

    Article  Google Scholar 

  • Hofte, H. and Whiteley, H.R. 1989. Insecticidal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.

    PubMed  CAS  Google Scholar 

  • Huber, J. 1986. Use of baculoviruses in pest management programs. pp. 181–190 in: “The Biology of Baculoviruses II Practical Applications for Insect Control.” Granados, R.R., and Federici, B.A., eds. CRC Press, Boca Raton.

    Google Scholar 

  • Knowles, B.H. and Ellar, D.J. 1987. Colloid-osmotic lysis is a general feature of the mechanism of Bacillus thuringiensis δ-endotoxins with different insect specificities. Biochem Biophys Acta 924: 509–518.

    Article  CAS  Google Scholar 

  • Krieg, A., Huger, A., Langenburch, G., and Schnetter, W. 1983. Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae of Coleoptera. J. Appl. Ent. 96: 500–508.

    Google Scholar 

  • Kronstad, J.W., Schnepf, H.E. and Whitely, H.R. 1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bact. 154: 419–428.

    PubMed  CAS  Google Scholar 

  • Luckow, V.A. and Summers, M.D. 1988. Trends in the development of baculovirus expression vectors. Bio Tech. 6: 47–55.

    Article  CAS  Google Scholar 

  • Luthy, P., Cordier, J.L. and Fischer, H.M. 1982. Bacillus thuringiensis as a bacterial insecticide: Basic considerations and applications. pp. 35–37 in: “Microbial and Viral Pesticides.” Kurstak, E., ed. Marcel Dekker, New York.

    Google Scholar 

  • Matsuura, Y., Possee, R.D., Overton, H.A., and Bishop, D.H.L. 1987. Baculovirus expression vectors: The requirement for high level expression of protein, including glycoproteins. J. Gen. Virol. 68: 1233–1250.

    Article  PubMed  CAS  Google Scholar 

  • Merryweather, A.T., Weyer, U., Harris, M.P.G., Hirst, M., Booth, T. and Possee, R.D. 1990. Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. kurstaki HD-73 delta endotoxin. J. Gen. Virol. in press.

    Google Scholar 

  • Miller, L.K. 1988. Baculoviruses as gene expression vectors. Ann. Rev. Microbio. 42: 177–199.

    Article  CAS  Google Scholar 

  • Pennock, G.D., Shoemaker, C., and Miller, L.K. 1984. Strong and regulated expression of E. coli β-galactosidase in insect cells using a baculovirus vector. Mol. Cell. Biol. 4: 399–406.

    PubMed  CAS  Google Scholar 

  • Podgewaite, J.D. 1985. Strategies for field use of baculoviruses. pp. 775–797 in: “Viral Insecticides for Biological Control.” Maramorosch, K. and Sherman, K.E., eds. Academic Press, New York.

    Google Scholar 

  • Schnepf, H.E. and Whiteley, H.R. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene. J. Biol. Chem. 260: 584–593.

    Google Scholar 

  • Smith, G.E., Fraser, M.J. and Summers, M.D. 1983a. Molecular engineering of the Autographa californica nuclear prolyhedrosis virus genome: Deletion mutations within the polyhedrin gene. J. Virol. 46: 584–593.

    PubMed  CAS  Google Scholar 

  • Smith, G.E., Summers, M.D. and Fraser, M.J. 1983b. Production of human β interferon in insect cells with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156–2165.

    PubMed  CAS  Google Scholar 

  • Vlak, J.M., Klinkenberg, F.A., Zaal, K.J.M., Usmany, M., Klingeroode, E.C., Geervliet J.B.F., Roosien, J and Van Lent, J.W.M. 1988. Functional analysis studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10 β-galactosidase fusion gene. J. Gen. Virol. 69: 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Weyer, U. and Possee, R.D. 1988. Functional analysis of the plO gene 5′ leader sequence of the Autographa californica nuclear polyhedrosis virus. Nuc. Acids Res. 16: 3635–3653.

    Article  CAS  Google Scholar 

  • Weyer, U., and Possee, R.D. 1989. Analysis of the promoter of the Autographa californica nuclear polyhedrosis virus plO gene. J. Gen. Virol. 70: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Whitely, H.R., Kronstad, J.W., Schnepf, H.E. and Desrosier, J.P. 1982. Cloning the crystal protein gene of B. thuringiensis in E. coli. pp. 131–144 in: “Molecular Cloning and Gene Regulation in Bacilli.” Ganeson, A.T., Chang, S., and Hoch, J.A., eds. Academic Press, New York.

    Google Scholar 

  • Williams, G.V., Rohel, D.Z., Kuzio, J., and Faulkner, P. 1989. A cytopathological investigation of Autograph californica nuclear polyhedrosis virus plO gene function using insertion/deletion mutants. J. Gen. Virol. 70: 187–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Possee, R.D., Merryweather, A.T., Weyer, U., Harris, M.P.G., Hirst, M., Bishop, D.H.L. (1990). The Development and Release of Genetically Engineered Viral Insecticides: A Progress Report 1986–1989. In: Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G., Law, J.H. (eds) Molecular Insect Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3668-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3668-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3670-7

  • Online ISBN: 978-1-4899-3668-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics