Skip to main content

Mechanisms of Lipopolysaccharide Priming for Enhanced Respiratory Burst Activity in Human Neutrophils

  • Chapter
New Aspects of Human Polymorphonuclear Leukocytes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 297))

Abstract

The neutrophil is important in host defense against bacterial and fungal infections (1). That the neutrophil is capable of serving in this crucial role is made possible by-virtue of its unique ability to induce microbial killing, in part, by exposing ingested microorganisms to toxic oxygen metabolites, including superoxide anion ((math)) — products of the respiratory burst, which commences during phagocytosis (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klebanoff, S.J., Clark, R.A.: “The Neutrophil: Function and Clinical Disorders”, North-Holland Publishing Co., New York, 1978.

    Google Scholar 

  2. Babior, B.M.: The respiratory burst of phagocytes. J. Clin. Invest. 73:599–601 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. Weiss, S.J.: Tissue destruction by neutrophils. New Engl. J. Med. 320:365–376 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. Forehand, J.R., Nauseef, W.M., Johnston, R.B. Jr.: Inherited disorders of phagocytic killing, in: “The Metabolic Basis of Inherited Disease”, Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., eds., McGraw-Hill, New York, 1989.

    Google Scholar 

  5. Forehand, J.R., Pabst, M.J., Phillips, W.A., Johnston, R.B. Jr.: Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst: Role of intracellular calcium. J. Clin. Invest. 83:74–83 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. Korchak, H.M., Vienne, K., Rutherford, L.E., Weissmann, G.: Neutrophil stimulation: Receptor, membrane and metabolic events. Fed. Proc. 43:2749–2754 (1984).

    PubMed  CAS  Google Scholar 

  7. Guthrie, L.A., McPhail, L.C., Henson, P.M., Johnston, R.B. Jr.: Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharides: Evidence for increased activity of the superoxide-produc-ing enzyme. J. Exp. Med. 160:1656–1671 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. Sasada, M., Pabst, M.J., Johnston, R.B. Jr.: Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J. Biol. Chem. 258:9631–9642 (1983).

    PubMed  CAS  Google Scholar 

  9. Tsunawaki, S., Nathan, C.F.: Enzymatic basis of macrophage activation: Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J. Biol. Chem. 259:4305–4312 (1984).

    PubMed  CAS  Google Scholar 

  10. Breton, G., Cassatella, M.A., Cabrini, G., Rossi, F.: Activation of mouse macrophages causes no change in expression and function of phorbol diester receptors but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase. Immunolocrv 54:371–379 (1985).

    Google Scholar 

  11. Johnston, R.B. Jr.: Current concepts: Immunology — monocytes and macrophages. New Engl. J. Med. 318:747–752 (1988).

    Article  PubMed  Google Scholar 

  12. Bromberg, Y., Pick, E.: Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J. Biol. Chem. 260:13539–13545 (1985).

    PubMed  CAS  Google Scholar 

  13. Korchak, H.M., Weissmann, G.: Changes in membrane potential of human granuloctyes antecedes the metabolic responses to surface stimulation. Proc. Natl. Acad. Sci. USA 75:3818–3822 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. Whitin, J.C., Chapman, C.E., Simons, E.R., Chovaniec, M.E., Cohen, H.J.: Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease. J. Biol. Chem. 255:1874–1878 (1980).

    PubMed  CAS  Google Scholar 

  15. Kitagawa, S., Masatsugu, O., Nofiri, H., Kakinuma, K., Saito, M., Takaku, F., Mirua, Y.: Functional maturation of membrane potential changes and superoxide-producing capacity during differentiation of human granulocytes. J. Clin. Invest. 73:1062–1071 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. Waggoner, A.S.: Dye indicators of membrane potential. Ann. Rev. Biophys. Bioenq. 8:47–68 (1979).

    Article  CAS  Google Scholar 

  17. Seligmann, B.E., Gallin, J.I.: Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease. J. Clin. Invest. 66:493–503 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. Korchak, H.M., Vienne, K., Rutherfore, L.E., Wilkenfeld, C., Finkelstein, M.C., Wiessmann, G.: Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J. Biol. Chem. 259:4076–4082 (1984).

    PubMed  CAS  Google Scholar 

  19. Finkel, T.H., Pabst, M.J., Suzuki, H., Guthrie, L.A., Forehand, J.R., Phillips, W.A., Johnston, R.B. Jr.: Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin: Implications for regulation of the respiratory burst. J. Biol. Chem. 262:12589–12596 (1987).

    PubMed  CAS  Google Scholar 

  20. Grynkiewicz, G., Poenie, M., Tsien, R.Y.: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450 (1985).

    PubMed  CAS  Google Scholar 

  21. Korchak H.M., Vosshall, L.B., Zagon, G., Ljubich, P., Rich, A.M., Weissmann, G.: Activation of the neutrophil by calcium-mobilizing ligands. I. A chemotactic peptide and the lectin conconavalin A stimulate superoxide anion generation but elicit different calcium movement and phosphoinositide remodeling. J. Biol. Chem. 263:11090–11097 (1988).

    PubMed  CAS  Google Scholar 

  22. Korchak, H.M., Vosshall, L.B., Haines, K.A., Wildenfeld, C., Lundquist, K.F., Weissmann, G.: Activation of the human neutrophil by calcium-mobilizing ligands. II. Correlation of calcium, diacyl glycerol, and phosphatidic acid generation with superoxide anion generation. J. Biol. Chem. 263:11098–11105 (1988).

    PubMed  CAS  Google Scholar 

  23. Tsien, R.Y.: A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. Dennis, E.D.: Phospholipases, in: “The Enzymes”, vol. XVI, Boyer, P.D. ed., Academic Press, New York, 1983.

    Google Scholar 

  25. Chang, J., Musser, J.H., McGregor, H.: Phospholipase A2: Function and pharmacological regulation. Biochem. Pharmacol. 36:2429–2436 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. McPhail, L.C., Clayton, C.C., Synderman, R.: A potential second messenger role for unsaturated fatty acids: Activation of Ca2+-dependent protein kinase. Science (Wash. DC) 224:622–625 (1984).

    Article  CAS  Google Scholar 

  27. Kim, D., Clapham, D.E.: Potassium channels and cardiac cells activated by arachidonic acid and phospholipids. Science (Wash. DC) 244:1174–1176 (1989).

    Article  CAS  Google Scholar 

  28. Ordway, R.W., Walsh, J.V. Jr., Singer, J.J.: Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science (Wash. DC) 244:1176–1179 (1989).

    Article  CAS  Google Scholar 

  29. Curnutte, J.T., Badwey, J.A., Robinson, J.M., Karnovsky, M.J., Karnovsky, M.L.: Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate. J. Biol. Chem. 259:11851–11857 (1984).

    PubMed  CAS  Google Scholar 

  30. Stryer, L.: “Biochemistry,” third edition. W. H. Freeman and Co., New York, (1988).

    Google Scholar 

  31. Englberger, W., Bitter-Suerman, K., Hadding, U.: Influence of lysophospholipid and PAF on the oxidative burst of PMNL. Int. J. Immunolpharmacol. 9:275–282 (1987).

    Article  CAS  Google Scholar 

  32. Worthen, G.S., Seccombe, J.F., Clay, K.L., Guthrie, L.A., Johnston, R.B. Jr.: The priming of neutrophils by lipo-polysaccharide for production of intracellular platelet-activating factor: Potential role in mediation of enhanced superoxide secretion. J. Immunol. 140:3553–3559 (1988).

    PubMed  CAS  Google Scholar 

  33. Jain, M.K., Jahagirdar, D.V.: Action of phospholipase A2 on bilayers. Effect of inhibitors. Biochim. Biophys. Acta 814:319–326 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. Dennis, E.A.: Phospholipase A2 mechanism: Inhibition and role in arachidonic acid release. Drug Dev. Res. 10:205 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forehand, J.R., Bomalski, J.S., Johnston, R.B. (1991). Mechanisms of Lipopolysaccharide Priming for Enhanced Respiratory Burst Activity in Human Neutrophils. In: Hörl, W.H., Schollmeyer, P.J. (eds) New Aspects of Human Polymorphonuclear Leukocytes. Advances in Experimental Medicine and Biology, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3629-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3629-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3631-8

  • Online ISBN: 978-1-4899-3629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics